Published October 30, 2016 | Version v1
Journal article Open

EFFECT OF GAMMA IRRADIATION ON SEED GERMINATION, STORAGE, AND SEEDLING GROWTH OF Magnolia champaca L

  • 1. Forest Tree Seed Technology Research Institute Indonesia

Description

Gamma irradiation of seeds is known as an important factor in stimulating biochemical and physiological processes. This paper investigates the effect of seed irradiation on the seed germination, storability, and seedling growth traits of Magnolia champaca. Seeds were irradiated with 0, 5, 10, 15, 20, 40, 60, 80 and 100 Gy by Cobalt-60. The treated seeds were grouped into three lots, namely germination test, storage test and seedling growth characteristics. Observations were made for seed germination percentage, germination index, mean germination time, germination value and growth traits such as height, collar diameter, number of leaves, root length, and dry weight. Results showed that irradiation at a dose of 30 Gy was close to LD50, and irradiation at doses of 80 Gy and higher caused lethal effect. The maximum increase of germination parameters on irradiated seed was recorded at a dose of 10 Gy, and then it decreased. Growth rate in terms of seedling height, collar diameter, number of leaves, and dry weight have also increased in gamma irradiation doses up to 80 Gy, but the dose of 10 Gy resulted in survival and growth that was more stable and gave the highest values for most of the parameters. Hence, lower dose (10 Gy) of irradiation treatment can be used to increase seed germination, storability and seedling growth of M. champaca.

Files

3_EFFECT.pdf

Files (324.5 kB)

Name Size Download all
md5:871193ace5fb7f64660426c639847ff1
324.5 kB Preview Download

Additional details

References

  • Akinci, I. E., & Akinci, S. (2010). Effect of chromium toxicity on germination and early seedling growth in melon (Cucumis melo L.). African Journal of Biotechnology, 9(29), 4589–4594. Retrieved from ://000280349100012
  • Akshatha, & Chandrashekar, K. R. (2013). Effect of gamma irradiation on germination growth and biochemical parameters of Pterocarpus santalinus, an endangered species of Eastern Ghats. Europe Journal of Experimental Biology, 3, 266–270.
  • Akshatha, Chandrashekar, K. R., Somashekarappa, H. M., & Souframanien, J. (2013). Effect of gamma irradiation on germination, growth, and biochemical parameters of Terminalia arjuna Roxb. Radiation Protection and Environment, 36(1), 38–44.
  • Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1), 84–93.
  • Aynehband, A., & Afsharinafar, K. (2012). Effect of gamma irradiation on germination characters of amaranth seeds. Europe Journal of Experimental Biology, 2(4), 995–999.
  • Bahuguna, V. K., Rawat, M. M. S., & Naithani, K. C. (1987). Investigation on the seed of Michelia champaca Linn. for perfection of optimum conditions of storage. Indian Forester, 113(4), 243–248.
  • Bhargava, Y. R., & Khalatkar, A. S. (1987). Improved performance of Tectona grandis seeds with gamma irradiation. Acta Horticulture, 215, 51–53.
  • Bisht, N. S., & Ahlawat, S. P. (1999). Seed technology. SFRI Information Bulletin No 7. Itanagar: State Forest Research Institute India.
  • Bodele, S. K. (2013). Effect of gamma radiation on morphological and growth parameters of Andrographis paniculata (Burm.F) Wall. Ex. Nees. Indian Journal of Applied Research, 3(6), 55–57.
  • Bonner, F. T., Fozzo, J. A., Elam, W. W., & Land, S.B.J.(1994). Tree seed technology training course. Instructors manual. Southern Forest Experiment Station. Louisiana: Southern Forest Experiment Station, US Department Agriculture.
  • Candiani, G. C., Galetti, M., & Cardoso, V. J. M. (2004). Seed germination and removal of Michelia champaca L (Magnoliaceae) in eucalypt stands: the influence of the aril. Revista Arvore, 28, 327–332. https://doi.org/doi:10.1590/S0100-67622004000300002
  • Czabator, F. J. (1962). Germination value: an index combining speed and completeness of pine seed germination. Forest Science, 8, 386–396.
  • Darfour, B., Ocloo, F. C. K., & Wilson, D. D. (2012). Effects of irradiation on the cowpea weevil (Callosobruchus maculates F.) and moisture sorption isotherm of cowpea seed (Vigna unguiculata L. Walp). Arthropods, 1(1), 24–34.
  • De Micco, V., Arena, C., Pignalosa, D., & Durante, M. (2011). Effects of sparsely and densely ionizing radiation on plants. Radiation and Environmental Biophysics, 50(1), 1–19.
  • Esnault, M. A., Legue, F., & Chenal, C. (2010). Ionizing radiation: Advances in plant response. Environmental and Experimental Botany, 68(3), 231–237.
  • Fernando, M. T. R., Jayasuriya, K. M. G. G., Walck, J. L., & Wijetunga, A. S. T. B. (2013). Identifying dormancy class and storage behaviour of champak (Magnolia champaca) seeds, an important tropical timber tree. Journal of the National Science Foundation of Sri Lanka, 41(2), 141–146.
  • Gruner, M., Horvatic, M., Kujundzic, D., & Magdalenic, C. (1992). Effect of gamma irradiation on the lipid components of soy protein products. Nahrung, 36, 443–450.
  • Habba, I. E. (1992). Physiological effect of gamma rays on growth and productivity of Hyoscyamus muticus L. and Atropa belladonna L (PhD Thesis). Cairo University.
  • Hell, K. G., & Silveira, M. (1974). Imbibition and germination of gamma irradiation Phaseolus vulgaris seeds. Field Crop Abstract, 38(6), 300.
  • Hong, T. D., & Ellis, R. H. (1995). A protocol to determine seed storage behaviour. In J. M. M. Engels & J. Toll (Eds.), IPGRI Technical Bulletin (pp. 1–62). Rome: International Plant Genetic Resources Institute.
  • Hossain, M. A., Arefin, M. K., Khan, B. M., & Rahman, M. A. (2005). Effects of seed treatments on germination and seesling growth attributes of Horitaki (Terminalia chebula Retz.) in the nursery. Research Journal of Agriculture and Biological Sciences, 1(2), 135–141.
  • Hossain, M. K., & Nizam, M. Z. U. (2002). Michelia champaca L. In J. A. Vozzo (Ed.), Tropical tree seed manual (pp. 572 – 574). Washington D.C.: United States Department of Agriculture Forest Service.
  • Iglesias-Andreu, L. G., Octavio-Aguilar, P., & Bello-Bello, J. (2012). Current importance and potential use of low doses of gamma radiation in forest species. In F. Adrovic (Ed.), Gamma radiation (pp. 265–280). Rijeka, Croatia: InTech Europe.
  • Ikram, N., Dawar, S., Abbas, Z., & Javed, Z. (2010). Effect of (60 cobalt) gamma rays on growth and root rot diseases in mungbean (Vigna radiata l.). Pakistan Journal of Botany, 42(3), 2165–2170.
  • Khan, M. R., Qureshi, A. S., Hussain, S. A., & Ibrahim, M. (2005). Genetic variability induced by gamma irradiation and its modulation with gibberellic acid in M2 generation of chickpea (Cicer arietinum L.). Pakistan Journal of Botany, 37(2), 285–292.
  • Khan, S., & Goyal, S. (2009). Improvement of mungbean varieties through induced mutations. African Journal of Plant Science, 3(August), 174–180.
  • Kimho, J., & Irawan, A. (2011). Studi keragaman jenis cempaka berdasarkan karakteristik morfologi di Sulawesi Utara. In Prosiding Ekspose Hasil-hasil Penelitian BPK Menado (pp. 61–78). Manado: Balai Penelitian Kehutanan Manado.
  • Kiong, L. P. A., Lai, A. G., Hussein, S., & Harun, A. R. (2008). Physiological Responses of Orthosiphon stamineus Plantles to Gamma Irradiation. America-Eurasian Journal of Sustainable Agriculture, 2(2), 135–149.
  • Kumar, A., & Mishra, M. N. (2004). Effect of gamma-rays, EMS and NMU on germination, seedling vigour, pollen viability and plant survival in M1and M2 generation of Okra (Abelmoschus esculentus (L.) Moench). Advances in Plant Science, 17(1), 295–297.
  • Kumar, R. V., Kumar, S., Shashidhara, S., Anitha, S., & Manjula, M. (2011). Antioxidant and antimicrobial activities of various extracts of Michelia champaca Linn flower. World Applied Sciences Journal, 12(4), 413–418.
  • Kuzin, A. M., Vagabova, M. E., & Revin, A. F. (1976). Molecular mechanisms of the stimulating action of ionizing radiation on seeds. 2. Activation of protein and high molecular RNA synthesis. Radiobiologiya, 16, 259– 261.
  • Lester, G. E., & Whitaker, B. D. (1996). Gamma-ray-induced changes in hypodermal mesocarp tissue plasma membrane of pre- and post-storage muskmelon. Physiologia Plantarum, 98, 265–270.
  • Lukman, A. H. (2011). Sebaran, potensi dan penggelolaan Michelia champaca L. In M. Bismark & Murniati (Eds.), Proceeding of Conservation Status and Formulation of Conservation Strategy of Threatened Tree Species (Ulin, Eboni and Michelia). (pp. 36–44). Bogor: Pusat Litbang Konservasi dan Rehabilitasi.
  • Maamoun, M. K. M., El-Mahrouk, M. E., Dewir, Y. H., & Omran, S. A. (2014). Effect of radiation and chemical mutagens on seeds germination of black cumin (Nigella sativa L). Journal of Agricultural Technology, 10(5), 1183–1199.
  • Marcu, D., Cristea, V., & Daraban, L. (2013). Dose-dependent effects of gamma radiation on lettuce (Lactuca sativa var. Capitata) seedlings. International Journal of Radiation Biology, 89(3), 219–23.
  • Moussa, H. R. (2011). Low dose of gamma irradiation enhanced drought tolerance in soybean. Agronomica Hungarica, 59, 1–12.
  • Nazir, M. B., Mohamad, O., Affida, A. A., & Sakinah, A. (1988). Research highlights on the use of induced mutations for plant improvement in Malaysia. Bangi: Malaysian Institute for Nuclear Technology Research.
  • Piri, I., Babayan, M., Tavassoli, A., & Javaheri, M. (2011). The use of gamma irradiation in agriculture. African Journal of Microbiology Research, 5(32), 5806–5811.
  • Ruan, S., Xue, Q., & Tylkowska, K. (2002). The influence of priming on germination of rice (Oryza sativa L.) seeds and seedling emergence and performance in flooded soil. Seed Science and Technology, 30, 61–67.
  • Sakin, M. A. (2002). The use of induced micro mutation for quantitative characters after EMS and gamma ray treatments in durum wheat breeding. Pakistan Journal of Applied Sciences, 2(12), 1102–1107.
  • Santosa, E., Pramono, S., Mine, Y., & Sugiyama, N. (2014). Gamma irradiation on growth and development of Amorphophallus muelleri Blume. Jurnal Agronomi Indonesia, 42(2), 118–123.
  • Selvaraju, P., & Raja, K. (2001). Effect of gamma irradiation of seeds on germination of different tree species. In Proceedings of IUFRO Joint Symposium on Tree Seed Technology, Physiology and Tropical Silviculture (pp. 141–142). Laguna, Philippines: IUFRO and University of Los Banos.
  • Sherif, F. E., Khattab, S., Ghoname, E., Salem, N., & Radwan, K. (2011). Effect of gamma irradiation on enhancement of some economic traits and molecular changes in Hibiscus sabdariffa L. Life Science Journal, 8, 220–229.
  • Singh, I. N. K., & Balyan, H. S. (2009). Induced mutations in bread wheat (Triticum aestivum L.) CV. "Kharchia 65" for reduced plant height and improve grain quality traits. Advances in Biological Research, 3(5-6), 215–221.
  • Sjodin, J. (1962). Some observations in X1 and X2 of Vicia faba L. after treatment with different mutagenes. Hereditas, 48, 565–586.
  • Soeranto, H. (2015). Aplikasi irradiasi sinar gamma pada tanaman kehutanan. In Workshop aplikasi teknologi nuklir pada tanaman kehutanan. Bogor: Balai Penelitian Teknologi Perbenihan Tanaman Hutan.
  • Sosef, M. S. M., & Hong, M .L. Prawirohatmodjo, S. (Eds.). (1998). Plant resources of South-East Asia. No. 5 (3). Timber trees: Lesser-known timbers.
  • Thapa, C. B. (2004). Effect of acute exposure of gamma rays on seed germination and seedling growth of Pinus kesiya Gord and P. wallichiana A.B. Jacks. Our Nature, 2, 13–17.
  • The International Seed Testing Association. (2011). International Rules for Seed Testing. Bassersdorf, Switzerland: The International Seed Testing Association.
  • Thompson, B. E. (1985). Seedling morphological evaluation–what you can tell by looking. In M. L. Duryea (Ed.), Evaluating seedling quality: principles, procedures and predictive abilities of major tests (pp. 59–71). Corvallis: Oregon State University, Forest Research Laboratory.
  • Villavicencio, A. L. C. H., Mancini-Filho, J., & Delinciee, H. (1998). Application of different techniques to identify the effects of irradiation on brazilian beans after six months storage. Radiation and Physical Chemistry, 52, 161–166.
  • Wegadara, M. (2008). Effect gamma irradiation on seed of anthurium (Anthurium andreanum). Faculty of Agriculture, Bogor Agricultural University.
  • Wi, S. G., Chung, B. Y., Kim, J. S., Kim, J. H., Baek, M. . H., & Lee, J. W. (2007). Effects of gamma irradiation on morphological changes and biological responses in plants. Micron, 38, 553–564.
  • World Health Organization, & Food and Agriculture Organization of the United Nations. (1988). Food irradiation: A technique for preserving and improving the safety of food. Geneva: World Health Organization.
  • Xu, Y., Cai, N., He, B., Zhang, R., Zhao, W., Mao, J., … Woeste, K. (2016). Germination and early seedling growth of Pinus densata Mast. provenances. Journal of Forest Research, 27(2), 283–294.
  • Yusuf, K. K., & Nair, P. M. (1974). Effect of gamma irradiation on the indole acetic acid synthesizing system and its significance in sprout inhibition of potatoes. Radiation Botany, 14, 251–256.
  • Zabala, N. Q. (1990). Silviculture of Michelia champaca. In Silviculture of species. Chittagong: Chittagong University, Institute of Forestry.