Published January 2, 2016
| Version 10003838
Journal article
Open
Sparsity-Aware Affine Projection Algorithm for System Identification
Creators
Description
This work presents a new type of the affine projection
(AP) algorithms which incorporate the sparsity condition of a
system. To exploit the sparsity of the system, a weighted l1-norm
regularization is imposed on the cost function of the AP algorithm.
Minimizing the cost function with a subgradient calculus and
choosing two distinct weighting for l1-norm, two stochastic gradient
based sparsity regularized AP (SR-AP) algorithms are developed.
Experimental results exhibit that the SR-AP algorithms outperform
the typical AP counterparts for identifying sparse systems.
Files
10003838.pdf
Files
(308.8 kB)
Name | Size | Download all |
---|---|---|
md5:25b5e2bd83266ddc7f392940ce4f88b0
|
308.8 kB | Preview Download |
Additional details
References
- S. Haykin, Adaptive filter theory, Upper Saddle River, NJ: Prentice Hall, 2002.
- A. H. Sayed, Fundamentals of adaptive filtering, New York: Wiley, 2003.
- K. Ozeki and T. Umeda, "An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties," Electro. Commun. Jpn., vol. 67-A, no. 5, pp. 19–27, 1984.
- O. Hoshuyama, R. A. Goubran, and A. Sugiyama, "A generalized proportionate variable step-size algorithm for fast changing acoustic environments," in Proc. Int. Conf. on Acoustics, Speech, and Signal Process. (ICASSP 2004), pp. IV-161–IV-164, 2004
- C. Paleologu, S. Ciochina, and J. Benesty, "An efficient proportionate affine projection algorithm for echo cancellation," IEEE Signal Process. Lett., vol. 17, no. 29, pp. 165–168, Feb. 2010.
- Y. Chen, Y. Gu, and A. O. Hero, "Sparse LMS for system identification," in Proc. Int. Conf. on Acoustics, Speech, and Signal Process. (ICASSP 2009), pp. 3125–3128, 2009.
- Y. Gu, J. Jin, and S. Mei, "l0 norm constraint LMS algorithm for sparse system identification," IEEE Signal Process. Lett., vol. 16, no. 9, pp. 774–777, Sep. 2009.
- Y.-S. Choi and W.-J. Song, "Noise constrained data-reusing adaptive filtering algorithms for system identification," IEICE Trans. Fundamentals., vol. E.95-A, no. 6, pp. 1084–1087, June. 2012.
- D. Bertsekas, A. Nedic, and A. Ozdaglar, Convex analysis and optimization, Athena Scientific, Cambridge, MA USA, 2003. [10] E. J. Candes, M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighting l0 Minimization," J. Fourier Anal. Appl., vol. 14, pp. 877–905, 2008.