Published September 2, 2015 | Version 10002694
Journal article Open

Uniformly Strong Persistence for a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes

Description

In this paper, a asymptotically periodic predator-prey
model with Modified Leslie-Gower and Holling-Type II schemes
is investigated. Some sufficient conditions for the uniformly strong
persistence of the system are established. Our result is an important
complementarity to the earlier results.

Files

10002694.pdf

Files (100.7 kB)

Name Size Download all
md5:86917bd0e933c0eb9538f1d2f0c77c91
100.7 kB Preview Download

Additional details

References

  • L.J. Chen, F.D. Chen Dynamic behaviors of the periodic predator-prey system with distributed time delays and impulsive effect, Nonlinear Anal.: Real World Appl. 12 (4) (2011) 2467-2473.
  • D. Mukherjee, Uniform persistence in a generalized prey-predator system with parasitic infection. Biosystems 47 (3) (1998) 149-155.
  • F.D. Chen, Almost periodic solution of the non-autonomous two-species competitive model with stage structure. Appl. Math. Comput. 181 (1) (2006) 685-693.
  • M. Sen, M. Banerjee, A. Morozov, Bifurcation analysis of a ratiodependent prey-predator model with the Allee effect. Ecological Com plexity 11 (2012) 12-27.
  • H.N. Agiza, E.M. Elabbasy, H. El-Metwally, A.A. Elsadany, Chaotic dy namics of a discrete prey-predator model with Holling type II. Nonlinear Anal.: Real World Appl. 10 (1) (2009) 116-129.
  • G. Aggelis, D.V. Vayenas, V. Tsagou, S. Pavlou, Prey-predator dynamics with predator switching regulated by a catabolic repression control mode, Ecological Modelling 183 (4) (2005) 451-462.
  • A.F. Nindjin, M.A. Aziz-Alaoui, Persistence and global stability in a delayed Leslie-Gower type three species food chain. J. Math. Anal. Appl. 340 (1) (2008) 340-357.
  • W. Ko, K. Ryu, Coexistence states of a nonlinear Lotka-Volterra type predator-prey model with cross-diffusion. Nonlinear Anal.: TMA 71 (12) (2009) 1109-1115.
  • M. Fazly, M. Hesaaraki, Periodic solutions for a discrete time predatorprey system with monotone functional responses. Comptes Rendus de l'Acadmie des Sciences-Series I 345 (4) (2007) 199-202. [10] F.D. Chen, On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay. J. Comput. Appl. Math. 180 (1) (2005) 33-49. [11] Z.J. Liu, S.M. Zhong, X.Y. Liu, Permanence and periodic solutions for an impulsive reaction-diffusion food-chain system with holling type III functional response. J. Franklin Inst. 348 (2) (2011) 277-299. [12] A.F. Nindjin, M.A. Aziz-Alaoui, M. Cadivel, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay. Nonlinear Anal.: Real World Appl. 7 (5) (2006) 1104-1118. [13] M. Scheffer, Fish and nutrients interplay determines algal biomass: a minimal model, Oikos 62 (1991) 271-282. [14] Y.K. Li, K.H. Zhao, Y. Ye, Multiple positive periodic solutions of species delay competition systems with harvesting terms. Nonlinear Anal.: Real World Appl. 12 (2)(2011) 1013-1022. [15] R. Xu, L.S. Chen, F.L. Hao, Periodic solution of a discrete time Lotka- Volterra type food-chain model with delays. Appl. Math. Comput. 171 (1) (2005) 91-103. [16] T.K. Kar, S. Misra, B. Mukhopadhyay, A bioeconomic model of a ratiodependent predator-prey system and optimal harvesting. J. Appl. Math. Comput. 22 (1-2) (2006) 387-401. [17] R. Bhattacharyya, B. Mukhopadhyay, On an eco-epidemiological model with prey harvesting and predator switching: Local and global perspect ives. Nonlinear Anal.: Real World Appl. 11 (5) (2010) 3824-3833. [18] K. Chakraborty, M. Chakraborty, T. K. Kar, Bifurcation and control of a bioeconomic model of a prey-predator system with a time delay. Nonlinear Anal.: Hybrid Sysy. 5 (4) (2011) 613-625. [19] W.P. Zhang, D.M. Zhu, P. Bi, Multiple periodic positive solutions of a delayed discrete predator-prey system with type IV functional responses. Appl. Math. Lett. 20 (10) (2007) 1031-1038. [20] R.H. Wu, X.L. Zou, K. Wang, Asymptotic behavior of a stochastic nonautonomous predator-prey model with impulsive perturbations. Comm. Nonlinear Sci.Numer. Simul. 20 (3) (2015) 965-974. [21] A. Moussaoui, S. Bassaid, E.H.A. Dads, The impact of water level fluctuations on a delayed prey-predator model. Nonlinear Anal.: Real World Appl. 21 (2015) 170-184. [22] C. Wang, X.Y. Li, Further investigations into the stability and bifurcation of a discrete predator-prey model. J. Math. Anal. Appl. 422 (2) (2015) 920-939. [23] X.H. Wang, J.W. Jia, Dynamic of a delayed predator-prey model with birth pulse and impulsive harvesting in a polluted environment. Phys. A: Statistical Mech. Appl. 422(2015) 1-15. [24] M. Haque, M.S. Rahman, E. Venturino, B.L. Li, Effect of a functional response-dependent prey refuge in a predator-prey model. Ecological Complexity 20 (2014) 248-256. [25] Q.Y. Bie, Q.R. Wang, Z.A. Yao, Cross-diffusion induced instability and pattern formation for a Holling type-II predator-prey model, Appl. Math. Comput. 247 (2014) 1-12. [26] M. Sen, M. Banerjee, A. Morozov, Stage-structured ratio-dependent predator-prey models revisited: When should the maturation lag result in systems destabilization? Ecological Complexity 19 (2014) 23-34. [27] S.H. Xu, Dynamics of a general prey-predator model with prey-stage structure and diffusive effects. Comput. Math. Appl. 68 (3) (2014) 405- 423. [28] Y.H. Fan, L.L. Wang, Multiplicity of periodic solutions for a delayed ratio-dependent predator-prey model with monotonic functional response and harvesting terms. Appl. Math. Comput. 244 (2014) 878-894. [29] P.J. Pal, P.K. Mandal, Bifurcation analysis of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and strong Allee effect. Math. Comput. Simul. 97 (2014) 123-146. [30] S. Bhattacharya, M. Martcheva, X.Z. Li, A predator-prey-disease model with immune response in infected prey. J. Math. Anal. Appl. 411 (1) (2014) 297-313. [31] J.N.Wang, W.H. Jiang, Impulsive perturbations in a predator-prey model with dormancy of predators. Appl. Math. Model. 38 (9-10) (2014) 2533- 2542. [32] J. P. Tripathi, S. Abbas, M. Thakur, A density dependent delayed predator-prey model with Beddington-DeAngelis type function response incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 22 (1-3) (2015) 427-450. [33] Z.P. Ma, W.T. Li, Bifurcation analysis on a diffusive Holling-Tanner predator-prey model. Appl. Math. Model. 37(6) (2013) 4371-4384. [34] R. Yuan, W.H. Jiang, Y. Wang, Saddle-node-Hopf bifurcation in a modified LeslieCGower predator-prey model with time-delay and prey harvesting. J. Math. Anal. Appl. 422 (2) (2015) 1072-1090. [35] J.D. Flores, E. Gonzalez-Olivares, Dynamics of a predatorCprey model with Allee effect on prey and ratio-dependent functional response. Eco logical Complexity 18 (2014) 59-66. [36] Y.M. Chen, F.Q. Zhang, Dynamics of a delayed predator-prey model with predator migration. Appl. Math. Model. 37 (3) (2013) 1400-1412. [37] Y. Zhang, Q.L. Zhang, X.G. Yan, Complex dynamics in a singular Leslie-Gower predator-prey bioeconomic model with time delay and stochastic fluctuations. Phys. A: Statistical Mech. Appl. 404 (2014) 180- 191. [38] C.J. Xu, Q.M. Zhang, Dynamical behavior of a delayed diffusive predator-prey model with competition and type III functional response. J. Egyptian Math. Soc. 22(3) (2014) 379-385. [39] O. Makarenkov, Topological degree in the generalized Gause preypredator model. J. Math. Anal. Appl. 410(2) (2014) 525-540. [40] A.J. Terry, A predatorCprey model with generic birth and death rates for the predator. Math. Bios. 248 (2014) 57-66. [41] J.Zhou, Positive steady state solutions of a LeslieCGower predator-prey model with Holling type II functional response and density-dependent diffusion. Nonlinear Anal.: TMA 82 (2013) 47-65. [42] Z.J. Du, Z.S. Feng, Periodic solutions of a neutral impulsive predatorprey model with Beddington-DeAngelis functional response with delays. J. Compu. Appl. Math. 258(2014) 87-98. [43] Z.Z. Ma, F.D. Chen, C.Q. Wu, W.L. Chen, Dynamic behaviors of a Lotka-Volterra predator-prey model incorporating a prey refuge and predator mutual interference. Appl. Math. Comput. 219(15) (2013) 7945- 7953. [44] Y.F. Lv, R. Yuan, Existence of traveling wave solutions for Gause-type models of predator-prey systems. Appl. Math. Comput. 229 (2014) 70-84. [45] C. Liu, Q.L. Zhang, J.N. Li, W.Q. Yue, Stability analysis in a delayed prey-predator-resource model with harvest effort and stage structure. Appl. Math. Comput. 238 (2014) 177-192. [46] H.W. Yin, X.Y. Xiao, X.Q. Wen, K. Liu, Pattern analysis of a modi fied Leslie-Gower predator-prey model with Crowley-Martin functional response and diffusion. Comput. Math. Appl. 67(8) (2014) 1607-1621. [47] J. Zhou, J.P. Shi The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses. J. Math. Anal. Appl. 405 (2) (2013) 618-630. [48] L.N. Guin, Existence of spatial patterns in a predatorCprey model with self-and cross-diffusion. Appl. Math. Comput. 226 (2014) 320-335. [49] F.D. Chen, Z.Z. Ma, H.Y. Zhang, Global asymptotical stability of the positive equilibrium of the Lotka-Volterra prey-predator model incorpo rating a constant number of prey refuges. Nonlinear Anal.: Real World Appl. 13 (6) (2012) 2790-2793. [50] K. Das, M.N. Srinivas, M.A.S. Srinivas, N.H. Gazi, Chaotic dynamics of a three species prey-predator competition model with bionomic harvesting due to delayed environmental noise as external driving force. CR Biol. 335 (8) (2012) 503-513. [51] S. Jana, M. Chakraborty, K. Chakraborty, T.K. Kar, Global stability and bifurcation of time delayed prey-predator system incorporating prey refuge. Math. Comput. Simul. 85 (2012) 57-77. [52] X.Q. Ding, B.T. Su, J.M. Hao, Positive periodic solutions for impulsive Gause-type predator-prey systems. Appl. Math. Comput. 218 (12) (2012) 6785-6797. [53] M.A. Aziz-Alaoui, M.D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-tpye II schemes. Appl. Math. Lett. 16(7)(2003) 1069-1075. [54] Y. Yang, W.C. Chen, Uniformly strong persistence of a nonlinear asymptotically periodic multispecies competition predator-prey system with general functional response. Appl. Math. Compu. 183 (1) (2006) 423-426.