Published September 2, 2015 | Version 10002597
Journal article Open

Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements

Description

The work reported through this paper is an
experimental work conducted on High Performance Concrete (HPC)
with super plasticizer with the aim to develop some models suitable
for prediction of compressive strength of HPC mixes. In this study,
the effect of varying proportions of fly ash (0% to 50% @ 10%
increment) on compressive strength of high performance concrete has
been evaluated. The mix designs studied were M30, M40 and M50 to
compare the effect of fly ash addition on the properties of these
concrete mixes. In all eighteen concrete mixes that have been
designed, three were conventional concretes for three grades under
discussion and fifteen were HPC with fly ash with varying
percentages of fly ash. The concrete mix designing has been done in
accordance with Indian standard recommended guidelines. All the
concrete mixes have been studied in terms of compressive strength at
7 days, 28 days, 90 days, and 365 days. All the materials used have
been kept same throughout the study to get a perfect comparison of
values of results. The models for compressive strength prediction
have been developed using Linear Regression method (LR), Artificial
Neural Network (ANN) and Leave-One-Out Validation (LOOV)
methods.

Files

10002597.pdf

Files (90.6 kB)

Name Size Download all
md5:fd77c4029caa09a046fb69586636b8d5
90.6 kB Preview Download

Additional details

References

  • Mehta, P. K. and Gjorv O. E., (1982), 'Properties of Portland Cement Concrete containing Fly ash and Condensed Silica Fume', Cement and Concrete Research Journal, Vol. 12, No. 5, pp.587-595.
  • Bhanumathidas N. and Kalidas N., (2002), 'Prevention is Better than Cure – Concrete Is No Exception', Master Builder, 4(4), pp 1-7.
  • Malhotra, V. M. (2003). "Concrete Technology for Sustainable Development", Sustainable Development in Cement and Concrete Industries, Proceedings Two-Day International Seminar, Milan, Italy, pp 17-18.
  • Provincs, S. and Provincs, J. S. (1996). "Novel aspects in Computerisation of Concrete Proportioning", Concrete International, Vol. 18, No. 12, pp 54 – 58.
  • Ganju, T. N. (1996). "Spread Sheeting Mix Designs", Concrete International, Vol. 18, No.12, pp 35 – 38.
  • Rao, B. K. and Kumar Vimal, (1996), 'Fly Ash in High Strength Concrete', Recent Advances in Civil Engineering, National Seminar, September 28, pp.115-121.
  • Kumar B., Tike G. K. and Nanda P. K., (2007), 'Evaluation of Properties of High Volume Fly Ash Concrete for Pavements', Journal of Materials in Civil Engineering, Vol.19, No. 10, pp. 906-911.
  • American Coal Ash Association, (1995), 'Fly Ash Facts for Highway Engineers', Federal Highway Administration, Report No. FHWA-SA- 94-081, Washington, DC, December.
  • Mullick, A. K., (2006), 'High Performance Concrete for Bridges and Highway Pavements', Proceedings of National Conference on Advances in Bridge Engineering, pp.51-63. [10] Shetty M. S., (2002), 'Concrete Technology- Theory and Practice', S. Chand & co. Ltd., New Delhi. [11] Neville A. M. and Brooks J. J., (2009), Concrete Technology, 8th edition, Pearson Education Ltd., Noida. [12] IS: 8112:1989, '43 Grade Ordinary Portland Cement Specifications', Bureau of Indian Standards, New Delhi. [13] IS: 10262:2009, 'Recommended Guidelines for Concrete Mix Design' Bureau of Indian Standards, New Delhi.