Spike Sorting Method Using Exponential Autoregressive Modeling of Action Potentials
Creators
Description
Neurons in the nervous system communicate with
each other by producing electrical signals called spikes. To
investigate the physiological function of nervous system it is essential
to study the activity of neurons by detecting and sorting spikes in the
recorded signal. In this paper a method is proposed for considering
the spike sorting problem which is based on the nonlinear modeling
of spikes using exponential autoregressive model. The genetic
algorithm is utilized for model parameter estimation. In this regard
some selected model coefficients are used as features for sorting
purposes. For optimal selection of model coefficients, self-organizing
feature map is used. The results show that modeling of spikes with
nonlinear autoregressive model outperforms its linear counterpart.
Also the extracted features based on the coefficients of exponential
autoregressive model are better than wavelet based extracted features
and get more compact and well-separated clusters. In the case of
spikes different in small-scale structures where principal component
analysis fails to get separated clouds in the feature space, the
proposed method can obtain well-separated cluster which removes
the necessity of applying complex classifiers.
Files
10000633.pdf
Files
(966.5 kB)
Name | Size | Download all |
---|---|---|
md5:35fee3770245ebab336bea47d8f11191
|
966.5 kB | Preview Download |
Additional details
References
- T. I. Aksenova, O. K. Chibirova, O. A. Dryga, I. V. Tetko, A. L. Benabid, and A. E. Villa, "An unsupervised automatic method for sorting neuronal spike waveforms in awake and freely moving animals," Methods, vol. 30, pp. 178-187, 2003.
- Z. Nenadic and J. W. Burdick, "Spike detection using the continuous wavelet transform," IEEE Trans Biomed Eng, vol. 52, pp. 74-87, Jan 2005.
- P. H. Thakur, H. Lu, S. S. Hsiao, and K. O. Johnson, "Automated optimal detection and classification of neural action potentials in extra-cellular recordings," J. Neurosci. Meth, vol. 162, pp. 364-376, 2007.
- M. S. Lewicki, "A review of methods for spike sorting: the detection and classification of neural action potentials," Network-Comp Neural, vol. 9, pp. 53-78, 1998.
- J. C. Letelier and P. P. Weber, "Spike sorting based on discrete wavelet transform coefficients," J. Neurosci. Meth, vol. 101, pp. 93-106, 2000.
- E. Hulata, R. Segev, Y. Shapira, M. Benveniste, and E. Ben-Jacob, "Detection and sorting of neural spikes using wavelet packets," Phys Rev Lett, vol. 85, pp. 4637-4640, Nov 20 2000.
- A. Pavlov, V. Makarov, I. Makarova, and F. Panetsos, "Sorting of neural spikes: When wavelet based methods outperform principal component analysis," Natural Computing, vol. 6, pp. 269-281, 2007.
- R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, "Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering," Neural Comput, vol. 16, pp. 1661-1687, Aug 2004.
- D. Peel and G. J. McLachlan, "Robust mixture modelling using the t distribution," Stat Comput, vol. 10, pp. 339-348, 2000. [10] P. M. Horton, A. U. Nicol, K. M. Kendrick, and J. F. Feng, "Spike sorting based upon machine learning algorithms (SOMA)," J. Neurosci. Meth, vol. 160, pp. 52-68, 2007. [11] T. Hermle, C. Schwarz, and M. Bogdan, "ICA and SOM for spike sorting of multielectrode recordings from CNS," J Physiol., vol. 98, pp. 349-356, 2004. [12] R. Prenger, M. Wu, S. V. David, and J. L. Gallant, "Nonlinear V1 Responses to Natural Scenes Revealed by Neural Network Analysis," Neural Networks, vol. 17, pp. 663-679, 2004. [13] R. Baragona, F. Battaglia, and D. Cucina, "A note on estimating autoregressive exponential models," Quad Stat vol. 4, pp. 71–88, 2002. [14] P. Stoica and P. Babu, "On the proper forms of BIC for model order selection," IEEE Trans Signal Process, vol. 60, pp. 4956-4961, 2012. [15] A. Ahmadian, S. Karimifard, H. Sadoughi, and M. Abdoli, "An efficient piecewise modeling of ECG signals based on Hermitian basis functions," in Conf Proc IEEE Eng Med Biol Soc, 2007, pp. 3180-3183. [16] T. Heskes, "Self-organizing maps, vector quantization, and mixture modeling," IEEE Transactions on Neural Networks. , vol. 12, pp. 1299-1305, 2001.