Published November 2, 2014 | Version 9999745
Journal article Open

Diameter of Zero Divisor Graphs of Finite Direct Product of Lattices

Description

In this paper, we verify the diameter of zero divisor
graphs with respect to direct product.

Files

9999745.pdf

Files (133.0 kB)

Name Size Download all
md5:59d61102e17213f93b4f3a2f11471b00
133.0 kB Preview Download

Additional details

References

  • M. Alizadeh, A. K. Das, H. R. Maimani, M. R. Pournaki, AND S. Yassemi, On the diameter and girth of zero-divisor graphs of posets, Discrete Appl. Math. 160 (2012), 1319-1324.
  • M. Alizadeh, H. R. Maimani, M. R. Pournaki, AND S. Yassemi, An ideal theoretic approach to complete partite zero-divisor graphs of posets, J. Algebra Appl 12 (2013), 1250148-1250159.
  • D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217(1999), 434-447.
  • S. E. Atani and M. S. Kohan, The diameter of a zero-divisor graph for finite direct product of commutative rings, Sarajevo Journal of Mathematics, 16 (2007), 149-156.
  • I. Beck, Coloring of a commutative ring, J. Algebra 116 (1988), 208- 226.
  • F. R. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2002), 206-214.
  • E. Estaji and K. Khashyarmanesh, The zero-divisor graph of a lattice, Results Math. 61 (2012), 1-11.
  • R. Halaˇs and M. Jukl, On Beck's coloring of posets, Discrete Math. 309 (2009), 4584-4589.
  • R. Halaˇs and H. L¨anger, The zero divisor graph of a qoset, Order 27 (2010), 343-351. [10] Vinayak Joshi, Zero divisor graph of a poset with respect to an ideal, Order 29 (2012), 499-506. [11] Vinayak Joshi and A. Khiste, Complement of the zero divisor graph of a lattice, Bull. Aust. Math. Soc. 89 (2014), 177-190. [12] Vinayak Joshi and Nilesh Mundlik, Prime ideals in 0-distributive posets, Cen. Eur. J. Math. 11 (2013), 940-955. [13] Vinayak Joshi, B. N. Waphare, and H. Y. Pourali, Zero divisor graphs of lattices and primal ideals, Asian-Eur. J. Math. 5 (2012), 1250037- 1250046. [14] Vinayak Joshi, B. N. Waphare, and H. Y. Pourali, On generalized zero divisor graph of a poset, Discrete Appl. Math. 161 (2013), 1490-1495. [15] Vinayak Joshi, B. N. Waphare, and H. Y. Pourali, The graph of equivalence classes of zero divisors , ISRN Discrete Math. (2014), Article ID 896270, 7 pages. http://dx.doi.org/101155/2014/896270. [16] D. Lu and T. Wu, The zero-divisor graphs of posets and an application to semigroups, Graphs Combin. 26 (2010), 793-804. [17] S. K. Nimbhorkar, M. P. Wasadikar and Lisa DeMeyer, Coloring of semilattices, Ars Comb. 12 (2007), 97-104. [18] S.P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Comm. Rings 4 (2002), 203-211. [19] J. Varlet, A generalization of notion of pseudo-complementness, Bull. Soc. Roy. Sci. Li´ege 36 (1968), 149-158. [20] D. B. West, Introduction to Graph Theory, Practice Hall, New Delhi, 2009.