Published November 2, 2014
| Version 9999745
Journal article
Open
Diameter of Zero Divisor Graphs of Finite Direct Product of Lattices
Authors/Creators
Description
In this paper, we verify the diameter of zero divisor
graphs with respect to direct product.
Files
9999745.pdf
Files
(133.0 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:59d61102e17213f93b4f3a2f11471b00
|
133.0 kB | Preview Download |
Additional details
References
- M. Alizadeh, A. K. Das, H. R. Maimani, M. R. Pournaki, AND S. Yassemi, On the diameter and girth of zero-divisor graphs of posets, Discrete Appl. Math. 160 (2012), 1319-1324.
- M. Alizadeh, H. R. Maimani, M. R. Pournaki, AND S. Yassemi, An ideal theoretic approach to complete partite zero-divisor graphs of posets, J. Algebra Appl 12 (2013), 1250148-1250159.
- D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217(1999), 434-447.
- S. E. Atani and M. S. Kohan, The diameter of a zero-divisor graph for finite direct product of commutative rings, Sarajevo Journal of Mathematics, 16 (2007), 149-156.
- I. Beck, Coloring of a commutative ring, J. Algebra 116 (1988), 208- 226.
- F. R. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2002), 206-214.
- E. Estaji and K. Khashyarmanesh, The zero-divisor graph of a lattice, Results Math. 61 (2012), 1-11.
- R. Halaˇs and M. Jukl, On Beck's coloring of posets, Discrete Math. 309 (2009), 4584-4589.
- R. Halaˇs and H. L¨anger, The zero divisor graph of a qoset, Order 27 (2010), 343-351. [10] Vinayak Joshi, Zero divisor graph of a poset with respect to an ideal, Order 29 (2012), 499-506. [11] Vinayak Joshi and A. Khiste, Complement of the zero divisor graph of a lattice, Bull. Aust. Math. Soc. 89 (2014), 177-190. [12] Vinayak Joshi and Nilesh Mundlik, Prime ideals in 0-distributive posets, Cen. Eur. J. Math. 11 (2013), 940-955. [13] Vinayak Joshi, B. N. Waphare, and H. Y. Pourali, Zero divisor graphs of lattices and primal ideals, Asian-Eur. J. Math. 5 (2012), 1250037- 1250046. [14] Vinayak Joshi, B. N. Waphare, and H. Y. Pourali, On generalized zero divisor graph of a poset, Discrete Appl. Math. 161 (2013), 1490-1495. [15] Vinayak Joshi, B. N. Waphare, and H. Y. Pourali, The graph of equivalence classes of zero divisors , ISRN Discrete Math. (2014), Article ID 896270, 7 pages. http://dx.doi.org/101155/2014/896270. [16] D. Lu and T. Wu, The zero-divisor graphs of posets and an application to semigroups, Graphs Combin. 26 (2010), 793-804. [17] S. K. Nimbhorkar, M. P. Wasadikar and Lisa DeMeyer, Coloring of semilattices, Ars Comb. 12 (2007), 97-104. [18] S.P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Comm. Rings 4 (2002), 203-211. [19] J. Varlet, A generalization of notion of pseudo-complementness, Bull. Soc. Roy. Sci. Li´ege 36 (1968), 149-158. [20] D. B. West, Introduction to Graph Theory, Practice Hall, New Delhi, 2009.