Mechanical Properties of Recycled Plasticized PVB/PVC Blends
Description
The mechanical properties of blends consisting of
plasticized poly(vinyl butyral) (PVB) and plasticized poly(vinyl
chloride) (PVC) are studied, in order to evaluate the possibility of
using recycled PVB waste derived from windshields. PVC was
plasticized with 38% of diisononyl phthalate (DINP), while PVB was
plasticized with 28% of triethylene glycol, bis(2-ethylhexanoate)
(3GO). The optimal process conditions for the PVB/PVC blend in 1:1
ratio were determined. Entropy was used in order to theoretically
predict the blends miscibility. The PVB content of each blend
composition used was ranging from zero to 100%. Tensile strength
and strain were tested. In addition, a comparison between recycled
and original PVB, used as constituents of the blend, was performed.
Files
9999420.pdf
Files
(200.5 kB)
Name | Size | Download all |
---|---|---|
md5:a7d83e2469d0b2db1430f9f5b44103af
|
200.5 kB | Preview Download |
Additional details
References
- I.V. Ivanov, "Analysis, modeling, and optimization of laminated lasses as plane beam", Inter Jour Solid and Structures, vol. 43, pp. 6887-6907, 2006.
- U. Keller, H. Mortelmans,"Adhesion in laminated safety glass–what makes it work", Glass Processing Days 8, pp. 353-356, June 1999
- D. Merinska, M. Tupy, V. Kasparkova," Degradation of plasticized PVB during reprocessing by kneading", Macrom Symposia, vol 286, pp. 107- 115, 2009.
- R. Iwasaki, C. Sato, "The influence of strain rate on the interfacial fracture toughness between PVB and laminated glass", JourPhys IV, vol 134, pp. 1153-1158, 2006
- M. Tupy, D. Merinska, P. Svoboda,"Effect of Water and Acid–Base Reactants on Adhesive Properties of Various Plasticized Poly(vinyl butyral) Sheets", JourApplPolymSci, vol. 127, issue 5,pp. 3474-3484, 2013
- J. Svoboda, M. Balazs, J. Sedlar, "Industry glass, Glass union concern: Research and developing institute of industrial glass in Teplice, vol. C, issue 1, 1988
- IOCA, The International Organization of Motor Vehicle Manufacturers, Displayed in: http://www.oica.net/category/production-statistics/, 2010
- M. Tupy, P. Mokrejs, D. Merinska, P. Svoboda, J. Zvonicek, "Windshield recycling focused on effective separation of PVB sheet", JourApplPolymSci, vol. 131, issue 4, article in press
- A.K. Dhaliwal, J.N. Hay, "The characterization of poly(vinyl butyral) by thermal analysis'', JourThermochemacta, vol. 391, pp. 245-255, 2002 [10] M. Tupy, D. Merinska, P. Svoboda, J. Zvonicek, "Influence of water and magnesium ion on the optical properties in various plasticized poly(vinyl butyral) sheets", JourApplPolymSci, vol. 118, pp. 2100-2008, 2010 [11] A. Bendaoud, Ch. Carrot, J. Charbonnier, C. Pillon, "Blends of Plasticized Polyvinyl Butyral and Polyvinyl Chloride: Morphology Analysis in View of Recycling, Macromol Symp Eng, vol. 298, pp. 1259-1268, 2013 [12] B. Papenfuhs, M. Steuer, "Plasticizer-containing polyvinylbutyrals, method for producing the same and the use thereof, especially for producing films for use in laminated safety glasses", US Patent 6,984,679, Dec 22, 2001 [13] B.E. Wade, J.J. D'errico, H.M. Thompson, M.K. Yu, "Polymer sheets and methods of controlling adhesion of polymer sheets to glass", US Patent Application US 20050208315, Mar 16, 2004 [14] M. Tupy, D. Merinska, V. Kasparkova, PVB sheet Recycling and Degradation, Recycling / Book 1, 1st ed. Rieka: Intech, 2012, ch. 5. [15] PVC molecular weight correlations, Displayed in: http://www.resintek.com/PVC%20Molecular%20Weight%20Conversio n%20Chart.pdf, 2014 [16] J. Burke, Hansen Solubility Parameters: Theory and Application, Displayed in: http://www.cool.conservation-us.org/byauth/burke/solpar/ solpar6.html , 2014