Published September 6, 2013 | Version 17088
Journal article Open

Comparison of Two Types of Preconditioners for Stokes and Linearized Navier-Stokes Equations

Description

To solve saddle point systems efficiently, several preconditioners have been published. There are many methods for constructing preconditioners for linear systems from saddle point problems, for instance, the relaxed dimensional factorization (RDF) preconditioner and the augmented Lagrangian (AL) preconditioner are used for both steady and unsteady Navier-Stokes equations. In this paper we compare the RDF preconditioner with the modified AL (MAL) preconditioner to show which is more effective to solve Navier-Stokes equations. Numerical experiments indicate that the MAL preconditioner is more efficient and robust, especially, for moderate viscosities and stretched grids in steady problems. For unsteady cases, the convergence rate of the RDF preconditioner is slightly faster than the MAL perconditioner in some circumstances, but the parameter of the RDF preconditioner is more sensitive than the MAL preconditioner. Moreover the convergence rate of the MAL preconditioner is still quite acceptable. Therefore we conclude that the MAL preconditioner is more competitive than the RDF preconditioner. These experiments are implemented with IFISS package. 

Files

17088.pdf

Files (790.5 kB)

Name Size Download all
md5:e3c3754b8f0f9dd97fd313f43ad1de84
790.5 kB Preview Download

Additional details

References

  • <p>
  • Y. Saad, Iterative Methods for Sparse Linear Systems (2nd edn), SIAM, Philadelphia, PA, 2003.
  • H. C. Elman, D. J. Silvester, A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Numer. Math. Sci. Comput., Oxford University Press, Oxford, UK, 2005.
  • M. Fortin, R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems, Stud. Math. Appl. 15, North-Holland, Amsterdam, New York, Oxford, 1983.
  • A. Segal, M. ur Rehman, C. Vuik, Preconditioners for incompressible Navier-Stokes solvers, Numer. Math. Theor. Meth. Appl., 2010, 3(3): 245-275.
  • M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer., 2005, 14: 1-137.
  • M. Benzi, M. Ng, Q. Niu, Z. Wang, A relaxed dimensional factorization preconditioner for the incompressible Navier-Stokes equations, J. Comput. Phys., 2011, 230(6): 6185-6202.
  • M. Benzi, D. B. Szyld, Existence and uniqueness of splittings for stationary iterative methods with applications to alternating methods, Numer. Math., 1997, 76: 309-321.
  • M. Benzi, X.-P. Guo, A dimensional split preconditioner for Stokes and linearized Navier-Stokes equations, Appl. Numer. Math., 2011, 61: 66- 76.
  • M. Benzi, A generalization of the Hermitian and skew-Hermitian splitting iteration, SIAM J. Matrix Anal. Appl., 2009, 31(2): 360-374. [10] M. Benzi, M. A. Olshanskii, An augmented Lagrangian-based approach to the Oseen problem, SIAM J. Sci. Comput., 2006, 28: 2095-2113. [11] M. Benzi, M. A. Olshanskii, Z. Wang, Modified augmented Lagrangian preconditioners for the incompressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 2011, 66(4): 486-508. [12] M. Benzi, Z. Wang, Analysis of augmented Lagrangian-based preconditioners for the steady incompressible Navier-Stokes equations, SIAM J. Sci. Comput., 2011, 33(5): 2761-2784. [13] Y. Cao, M.-Q. Jiang, Y.-L. Zheng, A splitting preconditioner for saddle point problems, Numer. Linear Algebra Appl., 2011, 18: 875-895. [14] P. R. Amestoy, T. A. Davis, I. S. Duff, Algorithm 837: AMD, an approximate minimum degree ordering algorithm, ACM Trans. Math. Software, 2004, 30: 381-388. [15] H. C. Elman, A. Ramage, D. J. Silvester, Algorithm 886: IFISS, a Matlab toolbox for modeling incompressible flow, ACM Trans. Math. Software, 2007, 33. [16] G. H. Golub, C. Greif, On solving block-structured indefinite linear systems, SIAM J. Sci. Comput., 2003, 24: 2076-2092. [17] M. F. Murphy, G. H. Golub, A. J. Wathen, A note on preconditioning for indefinite linear systems, SIAM J. Matrix Anal., 2000, 21:1300-1317 [18] M. Benzi, J. Liu, Block preconditioning for saddle point systems with indefinite (1, 1) block, Int. J. Comput. Math., 2007, 84(8): 1117-1129. [19] M. ur Rehman, C. Vuik, G. Segal, A comparison of preconditioners for incompressible Navier-Stokes solvers, Int. J. Numer. Meth. Fluids, 2008, 57: 1731-1751.</p>