Journal article Open Access

Model Order Reduction of Discrete-Time Systems Using Fuzzy C-Means Clustering

Anirudha Narain; Dinesh Chandra; Ravindra K. S.

A computationally simple approach of model order
reduction for single input single output (SISO) and linear timeinvariant
discrete systems modeled in frequency domain is proposed
in this paper. Denominator of the reduced order model is determined
using fuzzy C-means clustering while the numerator parameters are
found by matching time moments and Markov parameters of high
order system.

Files (224.6 kB)
Name Size
16482.pdf
md5:604686990649c759309f2dd793b93809
224.6 kB Download
  • <p>

  • B. Salimbahrami, B. Lohmann, T. Bechtold, and J. Korvink, "A Two- Sided Arnoldi-Algorithm with Stopping Criterion and an application in Order Reduction of MEMS", Mathematical and Computer Modelling of Dynamical Systems, 11(1):79–93, 2005. [10] W.H. Enright and M.S. Kamal, "On selecting a low order model using dominant mode concept", IEEE Trans. Auto. Contr. Vol. AC-25, No.5, pp. 976-978, Oct. 1980. [11] M.Gopal and S.I. Mehta, "On selection of eigen-values to be retained in the reduced order models", IEEE Trans. Auto. Contr. Vol. AC-27, No.3, pp. 688-690, June 1982. [12] Tai-Yih Chiu, "Model reduction by the low frequency approximation balancing method for unstable systems", IEEE Trans. Auto. Contr. Vol. AC-41, No.7, pp. 995-997, July 1996. [13] M. G. Safonov and R. Y. Chiang, "A Survey of model reduction by balanced truncation and some new results", Int. J. Control, 77(8):748– 766, 2004. [14] C.B.Vishwakarma and R. Prasad, "Clustering method for Reduction Order of Linear System using Pade approximation", IETE Journal of Research, vol 54, issue5, Oct 2008. [15] M. Srinivasan, A. Krishnan, "Transformer Linear Section Model Order Reduction with an Improved Pole Clustering", European Journal of Scintific Research, Vol. 44, No.4, pp.541-549, 2010. [16] D. Napoleon and S. Pavalakodi, " A New Method for Dimensionality Reduction using K-Means Clustering Algorithm for high Dimensional Data Set", International Journal of Computer Applications, Vol.13, No.7, January 2011. [17] Y.P. Shih, and W.T. Wu., "Simplification of z-transfer functions by continued fraction" Int. J. Contr., Vo. 17, pp. 1089-1094, 1973. [18] Chuang C., "Homographic transformation for the simplification of discrete-time functions by Padé approximation", Int. J. Contr., Vo. 22, pp. 721-729, 1975. [19] R.Y. Hwang, and Y.P. Shih, " Combined methods of model reduction via discrete Laguerre polynomials" Int. J. Contr., Vo. 37, pp. 615-622, 1983. [20] Khalid Hammouda, Fakhareddine Karray, "A Comparative Study of Data Clustering Techniques, University of Waterloo, Ontario, Canada. [21] Jesus Gonzalez, Ignacio Rojas, Hector Pomares, Julio Ortega, & Alberto Prieto, "A New Clustering Technique for Function Approximation" IEEE Transaction on Neural Networks, Vol.13, NO.1, January, 2002. [22] Kai-Ming Tse, Chen-Chien Hsu, and Chi-Hsu Wang, "Discrete-time model reduction of sampled systems using an enhanced multiresolutional dynamic genetic algorithm", IEEE Conference Proc. On Systems, Man, and Cybernatics, Taipei, 2001. [23] Chyi Hwang and Yen-Ping Shih, "On the time moments of discrete systems", Int. J. Contr., Vo. 34, No. 6, pp. 1227-1228, 1981. [24] Chyi Hwang and Ching-Shieh Hsieh, "A new canonical expansion of ztransfer function of reduced-order modeling of discrete-time systems", IEEE Transactions circuits and systems, vol. 36, No., December 1989. [25] N.N.Puri and M.T. Lim, "Stable optimal model reduction of linear discrete-time systems", Transactions of the ASME, Measurement, and Control,vol.119, pp.300-304, June 1997. [26] Vinay Pratap Singh, and Dinesh Chandra, "Reduction of discrete interval systems based on pole clustering and improved Pade approximation: a computer aided approach", AMO-Advanced Modeling and Optimization, volume 14, Number 1, 2012. [27] Shailendra K. Mittal, Dinesh Chandra, and Bhartiu Dwivedi, "VEGA based Routh-Padé approximants for discrete-time systems: a computer aided approach", IACSIT International Journal of Engineering and Technology Vol.1, No.5, December, 2009. [28] C.M. Liaw, C.T.Pan, and M.Quyang, "Model reduction of discrete system using the power decomposition method and the system identification method", IEE Proceeding, vol. 133, No.1, January, 1986. [29] G.Saraswathi, "A modified method for order reduction of large scale discrete systems", International Journal of Advance Computer Science and Applications, vol.2, No.6, 2011. [30] M.Farsi, K.Warwick and M. Guilandoust, "Stable reduced-order models for discrete-time system", IEE proceedings, Vol. 133, pt D, No.3, pp137-141, May 1986. [31] S. Mukherjee, Satakshi, R.C. Mittal, "Discrete system order reduction using multipoint step response matching", Journal of Computational and Applied Mathematics, 461-466, 2004. [32] S.N.Deepa, G. Sugumaran, "MPSO based Model Order Formulation Scheme for Discrete Time Linear System in State Space Form", European Journal of Scientific Research, vol.58 No.4, pp 444-454, 2011.</p>

  • L.Fortuna, G. Nunnari, and A. Gallo, "Model Order Reduction Techniques with applications in Electrical Engineering", Springer- Verlag, Lomndon, 1992.

  • Maurice F.Hutton and Bernard Friedland, "Routh-approximation for reducing order of linear, time-invariant systems" IEEE Trans. Auto. Contr. Vol. AC-20, No.3, pp. 329-337, June 1975.

  • T.N.Lucas, "Scaled Impulse Energy approximation for Model Reduction", IEEE Trans. Auto. Contr. Vol. AC-33, No.8, pp. 791793, August 1988.

  • Vimal Singh, "Obtaining Routh-Padé approximants using the Luus- Jaakola algorithm", IEE Proceedings, Control Theory Applications, vol.152,no.2, March 2005.

  • Vimal Singh, Dinesh Chandra, and Harnath Kar, "Improved Routh - Padé Approximant: A Computer-aided approach" IEEE Trans. Auto. Contr. Vol. AC-49, No.2, pp. 292-296, February 2004.

  • W. Krajewski, A. Lepschy, and U. Viaro, "Model reduction by matching Markov parameters, time moments and impulse response energy", IEEE Trans. Auto. Contr. Vol. AC-40, No.5, pp. 949-953, May 1995.

  • Y Shamash, "Stable reduced-order models using Padé type approximations", IEEE Trans. Auto. Control, Vol. AC-19, No.5, pp. 615-616, October 1974.

  • Y. Shamash, "Linear system reduction using Padé approximation to allow retention of dominant modes", Int. J. Contr., Vo. 21, Issue. 2, pp. 257-272, 1975.

6
4
views
downloads
All versions This version
Views 66
Downloads 44
Data volume 898.5 kB898.5 kB
Unique views 66
Unique downloads 33

Share

Cite as