Published March 21, 2009
| Version 15998
Journal article
Open
Computer Study of Cluster Mechanism of Anti-greenhouse Effect
Authors/Creators
Description
Absorption spectra of infra-red (IR) radiation of the
disperse water medium absorbing the most important greenhouse
gases: CO2 , N2O , CH4 , C2H2 , C2H6 have been calculated by
the molecular dynamics method. Loss of the absorbing ability at the
formation of clusters due to a reduction of the number of centers
interacting with IR radiation, results in an anti-greenhouse effect.
Absorption of O3 molecules by the (H2O)50 cluster is investigated
at its interaction with Cl- ions. The splitting of ozone molecule on
atoms near to cluster surface was observed. Interaction of water
cluster with Cl- ions causes the increase of integrated intensity of
emission spectra of IR radiation, and also essential reduction of the
similar characteristic of Raman spectrum. Relative integrated
intensity of absorption of IR radiation for small water clusters was
designed. Dependences of the quantity of weight on altitude for
vapor of monomers, clusters, droplets, crystals and mass of all
moisture were determined. The anti-greenhouse effect of clusters was
defined as the difference of increases of average global temperature
of the Earth, caused by absorption of IR radiation by free water
molecules forming clusters, and absorption of clusters themselves.
The greenhouse effect caused by clusters makes 0.53 K, and the antigreenhouse
one is equal to 1.14 K. The increase of concentration of
CO2 in the atmosphere does not always correlate with the
amplification of greenhouse effect.
Files
15998.pdf
Files
(358.7 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:7604b3a6ad5bbf8e593c49cc387765fc
|
358.7 kB | Preview Download |
Additional details
References
- F. Xie, W. Tian, M.P. Chipperfield, "Radiative effect of ozone change on stratosphere-troposphere exchange", vol. 113, 2008, pp. D00B09, doi: 10.1029/2008JD009829.
- V. Vaida, J.S. Daniels, H.G. Kjaergaard, L.M. Goss, A.F. Tuck, "Atmospheric absorption of near infrared and visible solar radiation by the hydrogen bonded water dimer," Q.J.R. Meteorol. Soc., vol. 127, 2001, pp. 1627-1643.
- K.J. Bignell, "The water vapour infrared continuum," Q.J.R. Meteorol. Soc., vol. 96, 1970, pp. 390-403.
- A.C.L. Lee, "A study of the continuum absorption within the 8-13 um atmospheric window," Q.J.R. Meteorol. Soc., vol. 99, 1973, pp.490-505.
- M.T. Coffey, "Water vapour absorption in 10-12 um atmospheric window, " Q.J.R. Meteorol. Soc., vol. 103, 1977, pp. 685-692.
- P.G. Wolynes, R.E. Roberts, "Molecular interpretation of the infrared water vapour continuum", Applied Optics, vol. 17, 1978, pp. 1484- 1485.
- H.R. Carlon , "Do clusters contribute to the infrared absorption spectrum of water vapor?," Infrared Phys., vol. 19, 1979, pp. 549-557.
- H.A. Gebbie, "Observations of anomalous absorption in the atmosphere", in Atmospheric water vapor, A. Deepak, T.D. Wilkerson and L.H. Ruhnke, Ed. New York: Academic Press, 1980, pp. 133-141.
- G.R. Low, H.G. Kjaergaard, "Calculation of OH-stretching band intensities of the water dimer and trimer," J. Chem. Phys., vol. 110, 1999, pp. 9104- 9115. [10] L.M. Goss, S.W. Sharpe, T.A. Blake, V. Vaida, and J.W. Brault, "Direct absorption spectroscopy of water clusters," J. Phys. Chem. A, vol. 103, 1999, pp. 8620-8624. [11] J. Barrett, "Greenhouse molecules, their spectra and function in the atmosphere," Energy & Environment, vol. 16, 2005, pp. 1037-1045. [12] A.Y. Galashev, O.R. Rakhmanova, and V.N. Chukanov, "Absorption and dissipation of infrared radiation by atmospheric water clusters," Russian Journal of Physical Chemistry, vol. 79, 2005, pp. 1455-1159. [13] O.A. Novruzova, A.A. Galasheva, and A.E. Galashev, "IR spectra of aqueous disperse systems adsorbed atmospheric gases: 1. Nitrogen," Colloid Journal, vol. 69, 2007, pp. 474-482. [14] O.A. Novruzova, and A.E. Galashev, "Numerical simulation of IR absorption, reflection, and scattering in dispersed water-oxigen media," High Temperature, vol. 46, 2008, pp. 60-68. [15] O.A. Novruzova, A.A. Galasheva, and A.E. Galashev, "IR spectra of aqueous disperse systems adsorbed atmospheric gases: 2. Argon," Colloid Journal, vol. 69, 2007, pp. 483-491. [16] L.X. Dang, and T.M. Chang, "Molecular dynamics study of water clusters, liquid and liquid-vapor interface of water with many-body potentials,"J. Chem. Phys., vol. 106, 1997, pp. 8149-8159. [17] M.A. Spackman, "Atom-atom potentials via electron gas theory," J. Chem. Phys., vol. 85, 1986, pp. 6579-6585. [18] M.A. Spackman, "A simple quantitative model of hydrogen bonding," J. Chem. Phys., vol. 85, 1986, pp. 6587-6601. [19] J.M. Haile, Molecular Dynamics Simulation. Elementary Methods. N.Y.-Chichester-Brisbane-Toronto-Singapore: John Wiley & Sons, Inc., 1992, ch. 4. [20] V.N. Koshlyakov, Zadachi Dinamiki Tverdogo Tela I Prikladnoi Teorii Giroskopov (Problems of Solid Body Dynamics and the Applied Theory of Gyroscopes). Moscow: Nauka, 1985, ch. 1. [21] R. Sonnenschein "An Improved algorithm for molecular dynamics simulation of rigid molecules," J. Comp. Phys., vol. 59, 1985, pp. 347- 350. [22] M. Neumann, "The dielectric constant of water. Computer simulations with the MCY potential," J. Chem. Phys., vol. 82, 1985, pp. 5663-5672. [23] W.B. Bosma, L.E. Fried, S. J. Mukamel, " Simulation of the intermolecular vibrational spectra of liquid water and water clusters," J. Chem. Phys., vol. 98. 1993. pp. 4413-4421. [24] L.D. Landau, and E.M. Lifshitz, Elektrodinamika Sploshnykh Sred (Electrodynamics of Continuous Media). vol. 8, Moscow: Nauka, 1982. [25] Fizicheskaya Entsiklopediya (Physical Encyclopedia), vol. 1, A.M. Prokhorov, Ed. Moscow: Sovetskaya entsiklopediya, 1988. [26] P.L. Goggin, and C. Carr, "Far infrared spectroscopy and aqueous solutions," in Water and Aqueous Solutions,vol, vol. 37, G.W. Neilson, J.E.Enderby, Ed..Bristol: Adam Hilger, 1986, pp. 149-161. [27] G. Herzberg, Molecular Spectra and Molecular Structure: II. Infrared and Raman Spectra of Polyatomic Molecules.. Princeton: Van Nostrand Reinhold, 1945. [28] V.I. Kozintsev, M.L. Belov, V.A. Gorodnichev, and Yu.V. Fedotov, Lazernyi Optiko-akusticheskii Analiz Mnogokomponentnykh Gazovykh Smesei (Laser Optical Acoustic Analysis of Multicomponent Gas Mixtures), Moscow: Izd. MGTU im. N.E. Baumana, 2003. [29] Ph. Vallee, J. Lafait, M. Ghomi, M. Jouanne, J.F. Morhange, "Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction," J. Mol. Struct. vol. 651-653. 2003, pp. 371-379. [30] S. J. Ghan, L. R. Leung, R. C. Easter, and H. Abdul-Razzak, "Prediction of cloud droplet number in a general circulation model," J. Geophys. Res., vol. 102(D18), 1997, pp.777-794. [31] P.L. Kebabian, C.E. Kolb, A. Freedman, "Spectroscopic water vapor sensor for rapid response measurements of humidity in the troposphere," J. Geophys. Res. vol. 107(D23), 2002, pp. 4670 (1-14). [32] M.M. Halmann, M. Steinberg, Greenhouse Gas Carbon Dioxide Mitigation. Science and Technology. Roca Raton, London, New York, Washington: Lewis publishers, 1999, pp. 7-8.