Published January 23, 2009 | Version 14357
Journal article Open

An Effective Approach for Distribution System Power Flow Solution

Description

An effective approach for unbalanced three-phase distribution power flow solutions is proposed in this paper. The special topological characteristics of distribution networks have been fully utilized to make the direct solution possible. Two matrices–the bus-injection to branch-current matrix and the branch-current to busvoltage matrix– and a simple matrix multiplication are used to obtain power flow solutions. Due to the distinctive solution techniques of the proposed method, the time-consuming LU decomposition and forward/backward substitution of the Jacobian matrix or admittance matrix required in the traditional power flow methods are no longer necessary. Therefore, the proposed method is robust and time-efficient. Test results demonstrate the validity of the proposed method. The proposed method shows great potential to be used in distribution automation applications.

Files

14357.pdf

Files (304.5 kB)

Name Size Download all
md5:c645552725748bac4e01d82cfce11daf
304.5 kB Preview Download

Additional details

References

  • IEEE Tutorial Course on Distribution Automation.
  • IEEE Tutorial Course on Power Distribution Planning.
  • W. M. Lin and M. S. Chen, "An overall distribution automation structure," Elect. Power Syst. Res., vol. 10, pp. 7-19, 1986.
  • B. Stott and O. Alsac, "Fast decoupled load flow," IEEE Trans. Power Apparat. Syst., vol. 93, pp. 859-869, May/June 1974.
  • J. H. Teng andW. M. Lin, "Current-based power flowsolutions for distribution systems," in Proc. IEEE Int. Conf. Power Syst. Technol., Beijing, China, 1994, pp. 414-418.
  • T. S. Chen, M. S. Chen, T. Inoue, and E. A. Chebli, "Three-phase cogenerator and transformer models for distribution system analysis," IEEE Trans. Power Delivery, vol. 6, pp. 1671-1681.2, Oct. 1991.
  • T.-H. Chen, M.-S. Chen, K.-J. Hwang, P. Kotas, and E. A. Chebli, "Distribution system power flow analysisÔÇöA rigid approach," IEEE Trans. Power Delivery, vol. 6, pp. 1146-1152, July 1991.
  • T. H. Chen and J. D. Chang, "Open wye-open delta and open delta-open delta transformer models for rigorous distribution system analysis," in Proc. Inst. Elect. Eng., vol. 139, 1992, pp. 227-234.
  • K. A. Birt, J. J. Graffy, J. D. McDonald, and A. H. El-Abiad, "Three phase load flow program," IEEE Trans. Power Apparat. Syst., vol. PAS- 95, pp. 59-65, Jan./Feb. 1976. [10] D. Shirmohammadi, H. W. Hong, A. Semlyen, and G. X. Luo, "A compensation- based power flow method for weakly meshed distribution and transmission networks," IEEE Trans. Power Syst., vol. 3, pp. 753- 762, May 1988. [11] G. X. Luo and A. Semlyen, "Efficient load flow for large weakly meshed networks," IEEE Trans. Power Syst., vol. 5, pp. 1309-1316, Nov. 1990. [12] C. S. Cheng and D. Shirmohammadi, "A three-phase power flowmethod for real-time distribution system analysis," IEEE Trans. Power Syst., vol. 10, pp. 671-679, May 1995. [13] R. D. Zimmerman and H. D. Chiang, "Fast decoupled power flow for unbalanced radial distribution systems," IEEE Trans. Power Syst., vol. 10, pp. 2045-2052, Nov. 1995. [14] W. M. Kersting and L. Willis, "Radial Distribution Test Systems, IEEE Trans. Power Syst.", vol. 6, IEEE Distribution PlanningWorking Group Rep., Aug. 1991.