Published November 21, 2011 | Version 10673
Journal article Open

Concurrent Testing of ADC for Embedded System

Authors/Creators

Description

Compaction testing methods allow at-speed detecting of errors while possessing low cost of implementation. Owing to this distinctive feature, compaction methods have been widely used for built-in testing, as well as external testing. In the latter case, the bandwidth requirements to the automated test equipment employed are relaxed which reduces the overall cost of testing. Concurrent compaction testing methods use operational signals to detect misbehavior of the device under test and do not require input test stimuli. These methods have been employed for digital systems only. In the present work, we extend the use of compaction methods for concurrent testing of analog-to-digital converters. We estimate tolerance bounds for the result of compaction and evaluate the aliasing rate.

Files

10673.pdf

Files (224.4 kB)

Name Size Download all
md5:fa1a4e5cb0500223b3c1296b9ca7a249
224.4 kB Preview Download

Additional details

References

  • Actel Corporation, SmartFusion Intelligent Mixed-Signal FPGAs: Innovative Intelligent Integration, 2010; www. actel. com/ FPGA/ Smart Fusion
  • I.Voyiatzis, A. Paschalis, D.Gizopoulos,N.Kranitis, and C.Halatsis, "A Concurrent BIST Architecture Based on a Self-Testing RAM", IEEE Transactions on Reliability, vol.54, No.1, 2005, pp. 69-78.
  • C. Stroude, J. Morton, T. Islam and H. Alassaly, "A mixed-signal built-in self-test approach for analog circuits", Southwest Symposium on Mixed- Signal Design, Las Vegas, USA, 2003, pp. 196-201.
  • R. Frohwerk, "Signature Analysis: A New Digital Field Service Method",Hewlett Packard J., vol. 28, No 9, May 1977, pp. 2-8.
  • G. Starr, J. Qin, B. Dutton, C. Stroud, F. Dai and V. Nelson "Automated generation of built-in self-test and measurement circuitry for mixedsignal circuits and systems," Proc. IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems, 2009, pp. 11-19.
  • R. Sharma and K. Saluja, "Theory, analysis and implementation of an on-line BIST technique," VLSI Design, vol. 1, no 1, 1993, pp. 9-22.
  • I. Voyiatzis, A. Paschalis, D. Gizopoulos, C. Halatsis, F. Makri, and M. Hatzimihail, "An input vector monitoring concurrent BIST architecture based on a precomputed test set," IEEE Trans. Computers, vol. 57, no. 8, 2008, pp. 1012-1022.
  • I. Voyiatzis, D. Gizopoulos, and A. Paschalis, "An input vector monitoring concurrent BIST scheme exploiting "X" values," 15th IEEE Int. On-Line Testing Symposium, 2009, pp. 206-207.
  • Y.-S. Wang, J.-X.Wang, F.-C.Lai and Y.-Z. Ye, "A low-cost BIST scheme for ADC testing", Shanghai, China, VI Int. Conf. on ASIC, vol. 2, 2005, pp. 665-668. [10] D. Lee, K. Yoo, K. Kim, G. Han and S. Kang, "Code-width testingbased compact ADC BIST circuit", IEEE Trans. on Circuits and Systems-II: Express briefs, vol. 51, No 11, 2004, pp. 603-606. [11] G. Wu, J. Rao, A. Ren and M. Ling, "Implementation of a BIST scheme for ADC test", V Int. Conf. on ASIC, Beijing, China, vol. 2, 2003, pp. 1128-1131. [12] A. Gookin, "A fast reading high resolution voltmeter that calibrates itself automatically", Hewlett Packard J., vol. 28, No 6, 1977, pp. 2-10. [13] V. Kneller, "Measurement, control and other processes: to the problem of knowledge systematization",Cavtat-Dubrovnik, Croatia, XVII IMEKO World Congress, 2003, pp. 1119-1124. [14] G. D'Antona and A. Ferrero, Digital Signal Processing for Measurement Systems, Springer Science + Business Media Inc., Berlin, 2006. [15] J. Wakerly, Error Detecting Codes, Self-Checking Circuits and Applications, Elsevier North-Holland, New York, 1978. [16] V. Geurkov, L. Kirischian, and V. Kirischian "Signature Testing of Analog-to-Digital Converters". Proceedings of the 19th IMEKO World Congress: Fundamental and Applied Metrology, Lisbon,