EEG-Based Fractal Analysis of Different Motor Imagery Tasks using Critical Exponent Method
Creators
Description
The objective of this paper is to characterize the spontaneous Electroencephalogram (EEG) signals of four different motor imagery tasks and to show hereby a possible solution for the present binary communication between the brain and a machine ora Brain-Computer Interface (BCI). The processing technique used in this paper was the fractal analysis evaluated by the Critical Exponent Method (CEM). The EEG signal was registered in 5 healthy subjects,sampling 15 measuring channels at 1024 Hz.Each channel was preprocessed by the Laplacian space ltering so as to reduce the space blur and therefore increase the spaceresolution. The EEG of each channel was segmented and its Fractaldimension (FD) calculated. The FD was evaluated in the time interval corresponding to the motor imagery and averaged out for all the subjects (each channel). In order to characterize the FD distribution,the linear regression curves of FD over the electrodes position were applied. The differences FD between the proposed mental tasks are quantied and evaluated for each experimental subject. The obtained results of the proposed method are a substantial fractal dimension in the EEG signal of motor imagery tasks and can be considerably utilized as the multiple-states BCI applications.
Files
9878.pdf
Files
(294.5 kB)
Name | Size | Download all |
---|---|---|
md5:3a9888c0306f769b6e32f6d43dfc7f89
|
294.5 kB | Preview Download |
Additional details
References
- S. G. Mason and G. E. Birch, ''A general framework for brain-computer interface design'', IEEE Trans. Neural Net. Syst. Rehab. Eng, vol. 11, pp.70?85, 2003.
- J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T.M. Vaughan, ''Brain-computer interface for communication and control'',Clin. Neurophysiol., vol.113, pp.767-791, 2002.
- J. R. Millan, F. Renkens, J. Mourino, and W. Gerstner, ''Noninvasivebrain-actuated control of a mobile robot by human EEG''. IEEE Trans.Biome. Eng., vol. 51, pp. 1026-1033, 2004.
- B. Obermaier, G. R. Muller, and G. Pfurtscheller, ''Virtual keyboard controlled by spontaneous EEG activity'', IEEE Trans. Neural Net. Syst.and Rehab. Eng., vol. 11, pp. 422-426, 2003.
- P. R. Kennedy, R. A. Bakay, M. M. Moore, K. Adams, and J. Gold waithe,''Direct control of a computer from the human central nervous system'',IEEE Trans. Rehab. Eng., vol. 8, pp. 198-202, 200.
- G. Dornhege, B. Blankertz, G. Curio, and K. Muller, ''Boosting Bit Ratesin Noninvasive EEG Single-Trial Classications by Feature Combination and Multiclass Paradigms'', IEEE Transactions On Biomedical Engineering, vol. 51, pp. 993-1002 , 2004.
- J. R. Millan, F. Renkens, J. Mourino, and W. Gerstner, ''Brain-actuated interaction'', Artif. Intell., vol. 159(1-2), pp. 241-259, 2004.
- G. Pfurtscheller, C. Neuper, A. Schlogl, K. Lugger, ''Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters'', IEEE Trans. Rehab. Eng., vol. 6, pp. 316-325, 1998.
- C. W. Anderson, E. A. Stolz, S. Shamsunder, ''Multivariate autoregressive models for classication of spontaneous electroencephalogram during metal tasks'', IEEE Trans. Biomed. Eng., vol. 45, pp. 277-286, 1998.[10] T. Wang, J. Deng, and B. He, ''Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns'', Clinical Neurophysiol., vol. 115, pp. 2744-2753, 2004.[11] L. Qin, L. Ding, and B. He, ''Motor imagery classication by means of source analysis for brain-computer interface applications'', J. Neural Eng., vol. 1, pp. 135-141, 2004.[12] M. Phothisonothai and M. Nakagawa, ''EEG-based classication of newimagery tasks using three-layer feed forward neural network classier for brain-computer interface'', J. Phys. Soc. Jpn., vol. 75, pp. 104801-1-104801-6, 2006.[13] R. Boostani and M. E. Moradi, ''A new approach in the BCI research based on fractal dimension as feature and Adaboost as classier'', J.Neural Eng., vol. 1 , pp. 212-217, 2004.[14] A. Bashashati, R.K. Ward, G.E. Birch, M.R. Hashemi, and MA.Khalilzadeh, ''Fractal Dimension-Based EEG Biofeedback System'', Proc.of the 25 Annual Inter. Conf. of the IEEE EMBS Cancun, vol. 3, pp.17-21,2003.[15] H. Prei, W. Lutzenberger, F. Pulvermuller, and N. Birbaumer, ''Fractaldimensions of short EEG time series in humans'', Neuroscience Letters vol. 225, pp. 77?80, 1997.[16] C. Neupera, R. Schererc, M. Reinerd, G. Pfurtscheller, ''Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG'', Cognitive Brain Research, vol. 25, pp.668-677, 2005.[17] G. Pfurtscheller, C. Brunner, A. Schlogl, ''Lopes da Silvab FH. Murhythm (de)synchronization and EEG single-trial classication of different motor imagery tasks'', NeuroImage, vol. 31, pp. 153-159, 2006.[18] D. J. McFarland, L. M. McCane, S. V. David, J. R. Wolpaw, ''Spatiallter selection for EEG-based communication'', Electroenceph. Clin.Neurophysiol., vol. 103, pp. 386-394, 1997.[19] B. Hjorth, ''An on-line transformation of EEG scalp potentials into orthogonal source derivations'', Electroenceph. Clin. Neurophysiol., vol.39, pp. 526-530, 1975.[20] M. Akay and E. J. H. Mulder, ''Effects of maternal alcohol intake on fractal properties in human fetal breathing dynamics'', IEEE Trans.Biomed. Eng., vol. 45, pp. 1097-1103, 1998.[21] J. Gnitecki and Z. Moussavi, ''The fractality of lung sounds: a comparison of three waveform fractal dimension algorithms'', Chaos, Solitons and Fractals, vol. 26, pp. 1065-1072, 2005.[22] M. Nakagawa, Chaos and fractals in engineering, World Scientic.Singapore, pp. 1-41, 1999.[23] M. Nakagawa, ''A critical exponent method to evaluate fractal dimension of self-afne data'', J. Phys. Soc. Jpn., vol. 62, pp. 4233-4239, 1993.[24] E. Curran and M. Stokes, ''Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI)systems'', Brain and Cognition, vol. 51, pp.326-336, 2003.