Journal article Open Access

Structural and Optical Characterizations of CIGST Solar Cell Materials

Abhay Kumar Singh

Structural and UV/Visible optical properties can be useful to describe a material for the CIGS solar cell active layer, therefore, this work demonstrates the properties like surface morphology, X-ray Photoelectron Spectroscopy (XPS) bonding energy (EB) core level spectra, UV/Visible absorption spectra, refractive index (n), optical energy band (Eg), reflection spectra for the Cu25 (In16Ga9) Se40Te10 (CIGST-1) and Cu20 (In14Ga9) Se45Te12 (CIGST-2) chalcogenide compositions. Materials have been exhibited homogenous surface morphologies, broading /-or diffusion of bonding energy peaks relative elemental values and a high UV/Visible absorption tendency in the wave length range 400 nm- 850 nm range with the optical energy band gaps 1.37 and 1.42 respectively. Subsequently, UV/Visible reflectivity property in the wave length range 250 nm to 320 nm for these materials has also been discussed.

Files (452.8 kB)
Name Size
452.8 kB Download
  • A. Anedda, C.M. Carbonaro, A. Serpi, N. Chiodini, A. Paleari, R. Scott, G. Brambilla and V. Pruneri, Vacuum ultraviolet absorption spectrum of photorefractive Sn-doped silica fiber preforms , J. Non-Cryst. Solids, vol.280, Issue.1-3, pp. 287 - 291, Feb. 2001. [10] A. K. Singh , N. Mehta and K. Singh, Optical and FTIR properties of Se93−XZn2Te5InX chalcogenide glasses, Physica B, vol. 404, Issue.20, pp. 3470-3474, Nov. 2009. [11] A. K. Singh and K. Singh, Composition dependence of UV-visible and MID-FTIR properties of Se98−x Zn2In x (x = 0, 2, 4, 6 and 10) chalcogenide glasses, J. Modern Optics, vol. 56, Issue.4, pp.471-476, Mar. 2009. [12] J.Tauc, "Amorphous and Liquid Semic- onductors", Plenum Press, New York, pp. 159, 1979. [13] F. Urbach, The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids, Phys. Rev. Vol.92, Issue.5, pp.1324-1324, Dec. 1953. [14] V. A. Akhavan, M. G. Panthani, B. W. Goodfellow, D. K. Reid and B. A. Korgel, Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices, Optics Express, vol.18, Issue. S3, pp. A411- A420,Sep. 2010. [15] F. D. Dhlamini, "Growth of pentenary chalcopyrite thin films and characterization of photovoltaic devices from these films", Ph.D. Thesis, Faculty of Science, University of Johannesburg, 2009. [16] Q. Cao , O. Gunawan , M. Copel , K. B. Reuter , S. J. Chey , V. R. Deline and D.B. Mitzi, Defects in Cu(In,Ga)Se2 chalcopyrite semiconductors: a comparative study of material properties, defect states, and photovoltaic performance, Adv. Energy Mater, vol.1,Issue.5, pp. 845-853, Oct. 2011.
  • E.A. Katz, D. Faiman and V. Lyubin, "Proceedings of the 29th IEEE Photovoltaic Specialists Conference, pp. 1298-1301, 2002.
  • F. Tong, X.S. Miao, Y. Wu, Z.P. Chen, H. Tong, X.M. Cheng, Effective method to identify the vacancies in crystalline GeTe, Appl. Phys. Lett. vol.97, Issue.26, pp.261904, Dec.2010.
  • J.F. Moulder, W.F. Sticker, P.E. Sobol, K.D. Bomben, Hand Book of Xray Photoelectron Spectroscopy, Perkin Elmer, 1992.
  • K. L. Chopra, P. D. Paulson and V. Dutta, Thin-film solar cells: an overview, Prog. Photo.: Res. Appl. vol. 12, Issue.2-3, pp.69-92, May 2004.
  • K. Zweibel, "The Terawatt Challenge for Thin Film PV, in Thin Film Solar Cells (ed. J. Poortmans)," Chichester, John Wiley & Sons, Ltd, pp 427-462, 2007.
  • K.L. Narayanan and M. Yamaguchi, Photovoltaic effects of a:C/C60/Si (p-i-n) solar cell structures ,Solar energy materials and solar cells, vol.75, Issue 3-4, pp.345-350, Feb.2003.
  • R.W. Birkmire, Compound polycrystalline solar cells:: Recent progress and Y2 K perspective Solar Energy Materials and Solar Cells, vol.65, Issue 1-4, pp.17-28, Jan. 2001.
  • Z.Q. Ma and B.X.Liu, Boron-doped diamond-like amorphous carbon as photovoltaic films in solar cell, Solar energy materials and solar cells, vol.69,no.4 pp.339- 444, Nov.2001.
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00


Cite as