Published May 21, 2008
| Version 8821
Journal article
Open
Using Genetic Algorithm to Improve Information Retrieval Systems
Authors/Creators
Description
This study investigates the use of genetic algorithms
in information retrieval. The method is shown to be applicable to
three well-known documents collections, where more relevant
documents are presented to users in the genetic modification. In this
paper we present a new fitness function for approximate information
retrieval which is very fast and very flexible, than cosine similarity
fitness function.
Files
8821.pdf
Files
(389.0 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:785992017464668c440312205076f1ba
|
389.0 kB | Preview Download |
Additional details
References
- J. H. Holland, "Adaptation in Natural and Artificial Systems", University of Michigan Press, Ann Arbor, 1975.
- K. A. DeJong, An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D. Thesis, University of Michigan, 1975.
- D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA., 1989.
- H. Chen, "Machine learning for information retrieval: neural networks, symbolic learning, and genetic algorithms". Journal of the American Society for Information Science, 46(3), 1995, pp. 194-216.
- J. Savoy and D. Vrajitoru, "Evaluation of learning schemes used in information retrieval (CR-I-95-02)". Universite de Neuchatel, Faculte de droit et des Sciences Economiques, 1996.
- M. Gordon, "Probabilistic and genetic algorithms in document retrieval". Communications of the ACM, 31(10), 1988, pp. 1208-1218.
- J. Yang, R. Korfhage and E. Rasmussen. "Query improvement in information retrieval using genetic algorithms--a report on the experiments of the TREC project". In Proceedings of the 1st text retrieval conference (TREC-1), 1992, pp. 31-58.
- J. Morgan and A. Kilgour. "Personalising on-line information retrieval support with a genetic algorithm". In A. Moscardini, & P. Smith (Eds.), PolyModel 16: Applications of artificial intelligence, 1996, pp. 142-149.
- M. Boughanem, C. Chrisment, and L. Tamine. "On using genetic algorithms for multimodal relevance optimization in information retrieval". Journal of the American Society for Information Science and Technology, 53(11), 2002, pp. 934-942. [10] J. T. Horng and C. C. Yeh. "Applying genetic algorithms to query optimization in document retrieval". Information Processing & Management, 36(5), 2000, pp. 737-759. [11] D. Vrajitoru. "Crossover improvement for the genetic algorithm in information retrieval". Information Processing& Management, 34(4), 1998, pp. 405-415. [12] D. Vrajitoru. "Large population or many generations for genetic algorithms? Implications in information retrieval". In F. Crestani and G. Pasi (Eds.), Soft computing in information retrieval. Techniques and applications, Physica-Verlag, 2000, pp. 199-222. [13] D. Harman. "Overview of the first TREC conference". In Proceedings of the 16th ACM SIGIR conference on information retrieval, 1993, pp. 36- 47. [14] B. T. Bartell, G. W. Cottrell and R. K. Belew. "Automatic combination of multiple ranked retrieval systems". In Proceedings of the 17th ACM SIGIR conference on information retrieval, 1994, pp. 173-181. [15] P. Pathak, M. Gordon and W. Fan. "Effective information retrieval using genetic algorithms based matching functions adaption", in: Proc. 33rd Hawaii International Conference on Science (HICS), Hawaii, USA, 2000. [16] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval, Adisson, 1999. [17] G. Salton and M.H. McGill. Introduction to Modern Information Retrieval, McGraw-Hill, 1983. [18] C.J. Van Rijsbergen. Information Retrieval, second ed., Butterworth, 1979. [19] A. Bookstein. "Outline of a general probabilistic retrieval model", Journal of Documentation 39 (2), 1983, pp. 63-72. [20] N. Fuhr. "Probabilistic models in information retrieval", Computer Journal 35 (3), 1992, pp. 243-255. [21] C. H. Chang and C. C. Hsu. The design of an information system for hypertext retrieval and automatic discovery on WWW. Ph.D. thesis, Department of CSIE, National Taiwan University, 1999. [22] K. L. Kwok. "Comparing representations in Chinese information retrieval". ACM SIGIR'97, Philadelphia, PA, USA, 1997, pp. 34 -41. [23] T. Mitchell. Machine Learning, McGraw-Hill, 1997. [24] H. Chen et al., "A machine learning approach to inductive query by examples: an experiment using relevance feedback, ID3, genetic algorithms, and simulated annealing", Journal of the American Society for Information Science 49 (8), 1998, pp. 693-705. [25] W. Fan, M.D. Gordon and P. Pathak. "Personalization of search engine services for effective retrieval and knowledge management", in: Proc. 2000 International Conference on Information Systems (ICIS), Brisbane, Australia, 2000. [26] A.M. Robertson and P. Willet. "Generation of equifrequent groups of words using a genetic algorithm", Journal of Documentation 50 (3), 1994, pp. 213-232. [27] M. Gordon. "Probabilistic and genetic algorithms for document retrieval", Communications of the ACM 31 (10), 1988, pp. 1208-1218. [28] W. Fan, M.D. Gordon and P. Pathak. "Discovery of context-specific ranking functions for effective information retrieval using genetic programming", IEEE Transactions on knowledge and Data Engineering, in press. [29] M.P. Smith, M. Smith. "The use of genetic programming to build Boolean queries for text retrieval through relevance feedback", Journal of Information Science 23 (6), 1997, pp. 423-431. [30] J. Koza. "Genetic Programming". On the Programming of Computers by means of Natural Selection, The MIT Press, 1992. [31] J. Yang and R. Korfhage. "Query modifications using genetic algorithms in vector space models", International Journal of Expert Systems 7 (2), 1994, pp.165-191. [32] H. Kucera and N. Francis. "Computational analysis of present-day American English". Providence, RD: Brown University Press, 1967. [33] M. F. Porter. "An algorithm for suffix stripping. Program", 14(3), 1980, pp. 130-137. [34] G. Salton and C. Buckley. "Improving retrieval performance by relevance feedback". Journal of the American Society for Information Science, 41(4), 1990, pp. 288-297. [35] T. Noreault, M. McGill and M. B. Koll. "A performance evaluation of similarity measures, document term weighting schemes and representation in a Boolean environment". Information retrieval research. London: Butterworths, 1981.