Published April 17, 2017 | Version v1
Journal article Open

Functional trait diversity maximizes ecosystem multifunctionality

Description

Understanding the relationship between biodiversity and ecosystem functioning has been a core ecological research topic over the past decades. Although a key hypothesis is that the diversity of functional traits determines ecosystem functioning, we do not know how much trait diversity is needed to maintain multiple ecosystem functions simultaneously (multifunctionality). Here, we uncovered a scaling relationship between the abundance distribution of two key plant functional traits (specific leaf area, maximum plant height) and multifunctionality in 124 dryland plant communities spread over all continents except Antarctica. For each trait, we found a strong empirical relationship between the skewness and the kurtosis of the trait distributions that cannot be explained by chance. This relationship predicted a strikingly high trait diversity within dryland plant communities, which was associated with a local maximization of multifunctionality. Skewness and kurtosis had a much stronger impact on multifunctionality than other important multifunctionality drivers such as species richness and aridity. The scaling relationship identified here quantifies how much trait diversity is required to maximize multifunctionality locally. Trait distributions can be used to predict the functional consequences of biodiversity loss in terrestrial ecosystems.

Files

Files (88.2 kB)

Name Size Download all
md5:520e1fe89498f43eaaa35262908460d6
88.2 kB Download

Additional details

Funding

DRYFUN – Linking plant functional diversity to ecosystem multifunctionality in arid systems worldwilde 656035
European Commission
BIOCOM – Biotic community attributes and ecosystem functioning: implications for predicting and mitigating global change impacts 242658
European Commission