Published July 22, 2011
| Version 5744
Journal article
Open
Dynamic Bus Binding for Low Power Using Multiple Binding Tables
Creators
Description
A conventional binding method for low power in a
high-level synthesis mainly focuses on finding an optimal binding for
an assumed input data, and obtains only one binding table. In this
paper, we show that a binding method which uses multiple binding
tables gets better solution compared with the conventional methods
which use a single binding table, and propose a dynamic bus binding
scheme for low power using multiple binding tables. The proposed
method finds multiple binding tables for the proper partitions of an
input data, and switches binding tables dynamically to produce the
minimum total switching activity. Experimental result shows that the
proposed method obtains a binding solution having 12.6-28.9%
smaller total switching activity compared with the conventional
methods.
Files
5744.pdf
Files
(1.1 MB)
Name | Size | Download all |
---|---|---|
md5:2d87709c3e516b3358e8d0f01153e680
|
1.1 MB | Preview Download |
Additional details
References
- J. Chang and M. Pedram, "Module assignment for low power," " in Proc. Eur. Design Automation Conf., pp.376-381, 1996.
- Y. Choi and T. Kim, "An efficient low-power binding algorithm in high-level synthesis," IEEE Int. Symp. On Circuits and Systems, vol. 4, pp. 321-324, 2002.
- C. Lyuh and T. Kim, "High-level synthesis for low power based on network flow method," " IEEE Trans. VLSI, vol. 1, no. 3, pp. 309-320, 2003
- X. Xing and C. C. Jong, "A look-ahead synthesis technique with backtracking for switching activity reduction in low power high-level synthesis," Microelectronics Journal, vol. 38, no. 4-5, pp. 595-605, 2007.
- H. Sankaran and S. Katkoori, "Bus Binding, Re-ordering, and Encoding for Crosstalk-producing Switching Activity Minimization during High Level Synthesis," in Proc. 4th IEEE Intl. Symp. On Electronics Design, Test & Applications, pp. 454-457, 2008.
- M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low power methodology manual : for system-on-chip design, Springer, pp. 4-7, 2007.
- J. Kim and J. Cho, "Low power bus binding exploiting optimal substructure," IEICE Trans. on Fundamentals of Electronics, Communications, and Computer Sciences, vol. E94-A, no. 1, pp. 332-341, 2011.