Planned intervention: On Wednesday June 26th 05:30 UTC Zenodo will be unavailable for 10-20 minutes to perform a storage cluster upgrade.
Published September 30, 2015 | Version v1
Journal article Restricted

Profiling of primary metabolites and flavonols in leaves of two table grape varieties collected from semiarid and temperate regions

  • 1. Department of Biology and Biochemistry, Birzeit University, Birzeit, West Bank, Palestine & Max-Planck-Institut für MÖlekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany

Description

Harb, Jamil, Alseekh, Saleh, Tohge, Takayuki, Fernie, Alisdair R. (2015): Profiling of primary metabolites and flavonols in leaves of two table grape varieties collected from semiarid and temperate regions. Phytochemistry 117: 444-455, DOI: 10.1016/j.phytochem.2015.07.013, URL: http://dx.doi.org/10.1016/j.phytochem.2015.07.013

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFFAFFDDFFECFFC62748FB124D3BFFF0

Related works

References

  • Ali, K., Maltese, F., Choi, Y., Verpoorte, R., 2010. Metabolic constituents of grapevine and grape-derived products. Phytochem. Rev. 9, 357-378.
  • Amarowicz, R., Narolewska, O., Karamac, M., Kosinska, A., Weidner, S., 2008. Grapevine leaves as a source of natural antioxidants. Pol. J. Food Nutr. Sci. 58, 73-78.
  • Araujo, W.L., Tohge, T., Ishizaki, K., Leaver, C.J., Fernie, A.R., 2011. Protein degradation - an alternative respiratory substrate for stressed plants. Trends Plant Sci. 16, 489-498.
  • Bouche, N., Fromm, H., 2004. GABA in plants: just a metabolite? Trends Plant Sci. 9, 110-115.
  • Bowers, J., Boursiquot, J.-M., This, P., Chu, K., Johansson, H., Meredith, C., 1999. Historical genetics: the parentage of Chardonnay, Gamay, and other wine grapes of northeastern France. Science 285, 1562-1565.
  • Campalans, A., Messeguer, R., Goday, A., Pages, M., 1999. Plant responses to drought, from ABA signal transduction events to the action of the induced proteins. Plant Physiol. Biochem. 37, 327-340.
  • Castellarin, S.D., Pfeiffer, A., Sivilotti, P., Degan, M., Peterlunger, E., Di Gaspero, G., 2007. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ. 30, 1381-1399.
  • Chang, S., Puryear, J., Cairney, J., 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11, 113-116.
  • Chaves, M.M., Flexas, J., Pinheiro, C., 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103, 551-560.
  • Cramer, G.R., Ergul, A., Grimplet, J., Tillett, R.L., Tattersall, E.A., Bohlman, M.C., Vincent, D., Sonderegger, J., Evans, J., Osborne, C., 2007. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct. Integr. Genomics 7, 111-134.
  • Downey, M.O., Harvey, J.S., Robinson, S.P., 2003. Synthesis of flavonols and expression of flavonol synthase genes in the developing grape berries of Shiraz and Chardonnay (Vitis vinifera L.). Aust. J. Grape Wine Res. 9, 110-121.
  • Erxleben, A., Gessler, A., Vervliet-Scheebaum, M., Reski, R., 2012. Metabolite profiling of the moss Physcomitrella patens reveals evolutionary conservation of osmoprotective substances. Plant Cell Rep. 31, 427-436.
  • Fernandez, O., Bethencourt, L., Quero, A., Sangwan, R.S., Clement, C., 2010. Trehalose and plant stress responses: friend or foe? Trends Plant Sci. 15, 409-417.
  • Figueiredo, A., Fortes, A.M., Ferreira, S., Sebastiana, M., Choi, Y.H., Sousa, L., Acioli- Santos, B., Pessoa, F., Verpoorte, R., Pais, M.S., 2008. Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. J. Exp. Bot. 59, 3371-3381.
  • Flint, S.D., Jordan, P.W., Caldwell, M.M., 1985. Plant protective response to enhanced UV-B radiation under field conditions: leaf optical properties and photosynthesis. Photochem. Photobiol. 41, 95-99.
  • Gechev, T.S., Hille, J., Woerdenbag, H.J., Benina, M., Mehterov, N., Toneva, V., Fernie, A.R., Mueller-Roeber, B., 2014. Natural products from resurrection plants: potential for medical applications. Biotechnol. Adv. 32, 1091-1101.
  • Good, A.G., Zaplachinski, S.T., 1994. The effects of drought stress on free amino acid accumulation and protein synthesis in Brassica napus. Physiol. Plant. 90, 9-14.
  • Goor, A., 1966. The history of the grape-vine in the holy land. Econ. Bot. 20, 46-64.
  • Gurbuz, Y., 2007. Determination of nutritive value of leaves of several Vitis vinifera varieties as a source of alternative feedstuff for sheep using in vitro and in situ measurements. Small Ruminant Res. 71, 59-66.
  • Hamzehzarghani, H., Kushalappa, A.C., Dion, Y., Rioux, S., Comeau, A., Yaylayan, V., Marshall, W.D., Mather, D.E., 2005. Metabolic profiling and factor analysis to discriminate quantitative resistance in wheat cultivars against fusarium head blight. Physiol. Mol. Plant Pathol. 66, 119-133.
  • Harb, J., Abed, A., Khaseeb, S., Saad, B., 2013. The nutritional quality of grape leaves: Comparative study between leaves collected from arid and temperate regions in Palestine. In: Qatar Foundation Annual Research Conference 2013, BIOP 0206.
  • Haselgrove, L., Botting, D., Heeswijck, R.V., HOj, P., Dry, P.R., Ford, C., Land, P., 2000. Canopy microclimate and berry composition: the effect of bunch exposure on the phenolic composition of Vitis vinifera L cv. Shiraz grape berries. Aust. J. Grape Wine Res. 6, 141-149.
  • Hmamouchi, M., Es-Safi, N., Lahrichi, M., Fruchier, A., Essassi, E., 1996. Flavones and flavonols in leaves of some Moroccan Vitis vinifera cultivars. Am. J. Enol. Vitic. 47, 186-192.
  • Hochberg, U., Degu, A., Toubiana, D., Gendler, T., Nikoloski, Z., Rachmilevitch, S., Fait, A., 2013. Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response. BMC Plant Biol. 13, 184.
  • Hoekstra, F.A., Golovina, E.A., Buitink, J., 2001. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6, 431-438.
  • Hong, Z., Lakkineni, K., Zhang, Z., Verma, D.P.S., 2000. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol. 122, 1129-1136.
  • Hounsome, N., Hounsome, B., Tomos, D., Edwards-Jones, G., 2008. Plant metabolites and nutritional quality of vegetables. J. Food Sci. 73, R48-R65.
  • Hudson, T.S., Hartle, D.K., Hursting, S.D., Nunez, N.P., Wang, T.T., Young, H.A., Arany, P., Green, J.E., 2007. Inhibition of prostate cancer growth by muscadine grape skin extract and resveratrol through distinct mechanisms. Cancer Res. 67, 8396-8405.
  • Joshi, V., Joung, J.-G., Fei, Z., Jander, G., 2010. Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 39, 933-947.
  • Kaplan, F., Kopka, J., Haskell, D.W., Zhao, W., Schiller, K.C., Gatzke, N., Sung, D.Y., Guy, C.L., 2004. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol. 136, 4159-4168.
  • Krikorian, R., Boespflug, E.L., Fleck, D.E., Stein, A.L., Wightman, J.D., Shidler, M.D., Sadat-Hossieny, S., 2012. Concord grape juice supplementation and neurocognitive function in human aging. J. Agric. Food Chem. 60, 5736-5742.
  • Krogan, N.T., Long, J.A., 2009. Why so repressed? Turning off transcription during plant growth and development. Curr. Opin. Plant Biol. 12, 628-636.
  • Kusano, M., Tohge, T., Fukushima, A., Kobayashi, M., Hayashi, N., Otsuki, H., Kondou, Y., Goto, H., Kawashima, M., Matsuda, F., Niida, R., Matsui, M., Saito, K., Fernie, A.R., 2011. Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant J. 67, 354- 369.
  • Less, H., Galili, G., 2008. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol. 147, 316-330.
  • Liu, F., VanToai, T., Moy, L.P., Bock, G., Linford, L.D., Quackenbush, J., 2005. Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiol. 137, 1115-1129.
  • Mantena, S.K., Baliga, M.S., Katiyar, S.K., 2006. Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells. Carcinogenesis 27, 1682-1691.
  • Martinelli, F., Remorini, D., Saia, S., Massai, R., Tonutti, P., 2013. Metabolic profiling of ripe olive fruit in response to moderate water stress. Sci. Hortic. 159, 52-58.
  • Martinelli, T., Whittaker, A., Bochicchio, A., Vazzana, C., Suzuki, A., Masclaux- Daubresse, C., 2007. Amino acid pattern and glutamate metabolism during dehydration stress in the 'resurrection' plant Sporobolus stapfianus: a comparison between desiccation-sensitive and desiccation-tolerant leaves. J. Exp. Bot. 58, 3037-3046.
  • Martins, S.C., Araujo, W.L., Tohge, T., Fernie, A.R., DaMatta, F.M., 2014. In high-lightacclimated coffee plants the metabolic machinery is adjusted to avoid oxidative stress rather than to benefit from extra light enhancement in photosynthetic yield. PLoS One 9, e94862.
  • Merewitz, E.B., Du, H., Yu, W., Liu, Y., Gianfagna, T., Huang, B., 2012. Elevated cytokinin content in IPT transgenic creeping bentgrass promotes drought tolerance through regulating metabolite accumulation. J. Exp. Bot. 63, 1315- 1328.
  • Mittler, R., 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15-19.
  • Nakabayashi, R., Yonekura-Sakakibara, K., Urano, K., Suzuki, M., Yamada, Y., Nishizawa, T., Matsuda, F., Kojima, M., Sakakibara, H., Shinozaki, K., Michael, A.J., Tohge, T., Yamazaki, M., Saito, K., 2014. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J. 77, 367-379.
  • Nanjo, T., Kobayashi, M., Yoshiba, Y., Sanada, Y., Wada, K., Tsukaya, H., Kakubari, Y., Yamaguchi-Shinozaki, K., Shinozaki, K., 1999. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J. 18, 185-193.
  • Ndiaye, M., Philippe, C., Mukhtar, H., Ahmad, N., 2011. The grape antioxidant resveratrol for skin disorders: promise, prospects, and challenges. Arch. Biochem. Biophys. 508, 164-170.
  • Obata, T., Fernie, A.R., 2012. The use of metabolomics to dissect plant responses to abiotic stresses. Cell. Mol. Life Sci. 69, 3225-3243.
  • Osorio, S., Do, P.T., Fernie, A.R., 2012. Profiling primary metabolites of tomato fruit with gas chromatography/mass spectrometry. T Plant Metabolom. Methods Mol. Biol. 860, 101-109.
  • Proietti, S., Moscatello, S., Famiani, F., Battistelli, A., 2009. Increase of ascorbic acid content and nutritional quality in spinach leaves during physiological acclimation to low temperature. Plant Physiol. Biochem. 47, 717-723.
  • Quero, A., Molinie, R., Elboutachfaiti, R., Petit, E., Pau-Roblot, C., Guillot, X., Mesnard, F., Courtois, J., 2014. Osmotic stress alters the balance between organic and inorganic solutes in flax (Linum usitatissimum). J. Plant Physiol. 171, 55-64.
  • Reddy, T., Reddy, V., Anbumozhi, V., 2003. Physiological responses of groundnut (Arachis hypogea L.) to drought stress and its amelioration: a critical review. Plant Growth Regul. 41, 75-88.
  • Ribeiro, P.R., Fernandez, L.G., de Castro, R.D., Ligterink, W., Hilhorst, H.W., 2014. Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: a metabolomics approach. BMC Plant Biol. 14, 223.
  • Rubin, G., Tohge, T., Matsuda, F., Saito, K., Scheible, W.-R., 2009. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21, 3567-3584.
  • Said, O., Khalil, K., Fulder, S., Azaizeh, H., 2002. Ethnopharmacological survey of medicinal herbs in Israel, the Golan Heights and the West Bank region. J. Ethnopharmacol. 83, 251-265.
  • Saradhi, P.P., AliaArora, S., Prasad, K., 1995. Proline accumulates in plants exposed to UV radiation and protects them against UV-induced peroxidation. Biochem. Biophys. Res. Commun. 209, 1-5.
  • Shadle, G.L., Wesley, S.V., Korth, K.L., Chen, F., Lamb, C., Dixon, R.A., 2003. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry 64, 153-161.
  • Shi, D., Sheng, Y., 2005. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environ. Exp. Bot. 54, 8-21.
  • Soubeyrand, E., Basteau, C., Hilbert, G., van Leeuwen, C., Delrot, S., Gomes, E., 2014. Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry 103, 38-49.
  • Timpa, J.D., Burke, J.J., Quisenberry, J.E., Wendt, C.W., 1986. Effects of water stress on the organic acid and carbohydrate compositions of cotton plants. Plant Physiol. 82, 724-728.
  • Tohge, T., Fernie, A.R., 2010. Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function. Nat. Protoc. 5, 1210-1227.
  • Tohge, T., Watanabe, M., Hoefgen, R., Fernie, A.R., 2013. The evolution of phenylpropanoid metabolism in the green lineage. Crit. Rev. Biochem. Mol. Biol. 48, 123-152.
  • Ufaz, S., Galili, G., 2008. Improving the content of essential amino acids in crop plants: goals and opportunities. Plant Physiol. 147, 954-961.
  • Urano, K., Maruyama, K., Ogata, Y., Morishita, Y., Takeda, M., Sakurai, N., Suzuki, H., Saito, K., Shibata, D., Kobayashi, M., 2009. Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J. 57, 1065-1078.
  • Vivier, M., Pretorius, I.S., 2000. Genetic improvement of grapevine: tailoring grape varieties for the third millennium-a review. S. Afr. J. Enol. Vitic. 21, 5-26.
  • Vogt, T., Jones, P., 2000. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci. 5, 380-386.
  • Wang, G., Li, F., Zhang, J., Zhao, M., Hui, Z., Wang, W., 2010a. Overaccumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat. Photosynthetica 48, 30-41.
  • Wang, G., Zhang, X., Li, F., Luo, Y., Wang, W., 2010b. Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica 48, 117-126.
  • Witt, S., Galicia, L., Lisec, J., Cairns, J., Tiessen, A., Araus, J.L., Palacios-Rojas, N., Fernie, A.R., 2012. Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Mol. Plant 5, 401-417.
  • Xue, G.-P., McIntyre, C.L., Glassop, D., Shorter, R., 2008. Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. Plant Mol. Biol. 67, 197-214.
  • Yilmaz, Y., Toledo, R.T., 2004. Health aspects of functional grape seed constituents. Trends Food Sci. Technol. 15, 422-433.