Dataset Open Access

Webis-TLDR-17 Corpus

Syed, Shahbaz; Voelske, Michael; Potthast, Martin; Stein, Benno

This corpus contains preprocessed posts from the Reddit dataset, suitable for abstractive summarization using deep learning. The format is a json file where each line is a JSON object representing a post. The schema of each post is shown below:

  • author: string (nullable = true)
  • body: string (nullable = true)
  • normalizedBody: string (nullable = true)
  • content: string (nullable = true)
  • content_len: long (nullable = true)
  • summary: string (nullable = true)
  • summary_len: long (nullable = true)
  • id: string (nullable = true)
  • subreddit: string (nullable = true)
  • subreddit_id: string (nullable = true)
  • title: string (nullable = true)

Specifically, the content and summary fields can be directly used as inputs to a deep learning model (e.g. Sequence to Sequence model ). The dataset consists of 3,848,330 posts with an average length of 270 words for content, and 28 words for the summary. The dataset is a combination of both the Submissions and Comments merged on the common schema. As a result, most of the comments which do not belong to any submission have null as their title.

Note : This corpus does not contain a separate test set. Thus it is up to the users to divide the corpus into appropriate training, validation and test sets.

 

Files (3.1 GB)
Name Size
corpus-webis-tldr-17.zip
md5:e2fb1d5026cdb895ea640bdb134d0398
3.1 GB Download
732
251
views
downloads
All versions This version
Views 732734
Downloads 251251
Data volume 788.6 GB788.6 GB
Unique views 658660
Unique downloads 209209

Share

Cite as