Published October 7, 2017
| Version v1
Journal article
Open
Fabricación de biomodelos tridimensionales odontológicos a partir de tomografías computarizadas
Creators
- 1. Escuela de Odontología, Facultad de Salud y Odontología, Universidad Diego Portales, Santiago, Chile
Contributors
- 1. UNICAMP
- 2. Universidad de Chile
Description
Este manuscrito tiene por objetivo establecer un flujo de trabajo para la construcción de biomodelos tridimensionales mediante la técnica de fabricación con filamento fundido. Se describen las características de tomografías computarizadas en formato DICOM, la generación de un modelo tridimensional desde los archivos DICOM y finalmente la manufactura (impresión), por medio de la tecnología de fabricación con filamento fundido. A través de este protocolo de trabajo es posible generar biomodelos tridimensionales paciente-específicos a bajo costo, donde la precisión de la tecnología con filamento fundido es confrontable con otros sistemas más costosos.
Notes
Files
e07102017es.pdf
Files
(280.5 kB)
Name | Size | Download all |
---|---|---|
md5:6a597ef85f25bbfe2b5f3242588b3692
|
280.5 kB | Preview Download |
Additional details
References
- Galhano GÁP, Pellizzer EP, Mazaro JVQ. Optical Impression Systems for CAD-CAM Restorations. Journal of Craniofacial Surgery [Internet]. 2012 Nov;23(6):e575–9. Available from: http://dx.doi.org/10.1097/SCS.0b013e31826b8043
- Baroudi K, Ibraheem S. Assessment of Chair-side Computer-Aided Design and Computer-Aided Manufacturing Restorations: A Review of the Literature. J Int Oral Health. 2015 Apr 1;7(4):96–104
- Boitelle P, Mawussi B, Tapie L, Fromentin O. A systematic review of CAD/CAM fit restoration evaluations. Journal of Oral Rehabilitation [Internet]. 2014 Jun 21;41(11):853–74. Available from: http://dx.doi.org/10.1111/joor.12205
- Maschio F, Pandya M, Olszewski R. Experimental Validation of Plastic Mandible Models Produced by a "Low-Cost" 3-Dimensional Fused Deposition Modeling Printer. Med Sci Monit. 2016 Mar 22;22:943–57
- Bidgood W, Horii S, Prior F, Van S. Understanding and using DICOM, the data interchange standard for biomedical imaging. J Am Med Inform Assoc. 1997 May 1;4(3):199–212
- Graham RNJ, Perriss RW, Scarsbrook AF. DICOM demystified: A review of digital file formats and their use in radiological practice. Clinical Radiology [Internet]. 2005 Nov;60(11):1133–40. Available from: http://dx.doi.org/10.1016/j.crad.2005.07.003
- Hanasono MM, Skoracki RJ. Computer-assisted design and rapid prototype modeling in microvascular mandible reconstruction. The Laryngoscope [Internet]. 2012 Sep 24;123(3):597–604. Available from: http://dx.doi.org/10.1002/lary.23717
- Grimm T. User's Guide to Rapid Prototyping. Society of Manufacturing Engineers; 2004. 404 p
- Chua C Kai, Leong K Fai, Lim C Sing. Rapid Prototyping. World Scientific; 2010. 512 p
- Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magnetic Resonance Imaging [Internet]. 2012 Nov;30(9):1323–41. Available from: http://dx.doi.org/10.1016/j.mri.2012.05.001
- TURKYILMAZ I, TÖZÜM TF, TUMER C. Bone density assessments of oral implant sites using computerized tomography. Journal of Oral Rehabilitation [Internet]. 2007 Apr;34(4):267–72. Available from: http://dx.doi.org/10.1111/j.1365-2842.2006.01689.x
- Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage [Internet]. 2006 Jul;31(3):1116–28. Available from: http://dx.doi.org/10.1016/j.neuroimage.2006.01.015
- Gonzalez S Russell, Bennett D Beaubien. 3D Printing. Rowman & Littlefield; 2016. 190 p
- Athanasiou K, Niederauer G, Agrawal C. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 1996 Jan 1;17(2):93–102
- Sin L Tin, Rahmat A Razak, A. W. A. Rahman W. Polylactic Acid. William Andrew; 2012. 341 p
- Petropolis C, Kozan D, Sigurdson L. Accuracy of medical models made by consumer-grade fused deposition modelling printers. Plast Surg (Oakv). 2015 Jul 1;23(2):91–4
- Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials [Internet]. 2005;74B(2):782–8. Available from: http://dx.doi.org/10.1002/jbm.b.30291
- Rankin T, Mailey B, Cucher D, Giovinco N, Armstrong D, Gosman A. Use of 3D Printing for Auricular Template Molds in First Stage Microtia. Plast Reconstr Surg [Internet]. 2014;(134):16–7. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00006534-201410001-00023
- Tan H, Yang K, Wei P, Zhang G, Dimitriou D, Xu L, et al. A Novel Preoperative Planning Technique Using a Combination of CT Angiography and Three-Dimensional Printing for Complex Toe-to-Hand Reconstruction. Journal of Reconstructive Microsurgery [Internet]. 2015 Mar 18;31(05):369–77. Available from: http://dx.doi.org/10.1055/s-0035-1546419
- Naftulin JS, Kimchi EY, Cash SS. Streamlined, Inexpensive 3D Printing of the Brain and Skull. Martens L, editor. PLOS ONE [Internet]. 2015 Aug 21;10(8):e0136198. Available from: http://dx.doi.org/10.1371/journal.pone.0136198
- Li Y, Jiang Y, Ye B, Hu J, Chen Q, Zhu S. Treatment of Dentofacial Deformities Secondary to Osteochondroma of the Mandibular Condyle Using Virtual Surgical Planning and 3-Dimensional Printed Surgical Templates. Journal of Oral and Maxillofacial Surgery [Internet]. 2016 Feb;74(2):349–68. Available from: http://dx.doi.org/10.1016/j.joms.2015.06.169
- Chow LK, Cheung LK. The Usefulness of Stereomodels in Maxillofacial Surgical Management. Journal of Oral and Maxillofacial Surgery [Internet]. 2007 Nov;65(11):2260–8. Available from: http://dx.doi.org/10.1016/j.joms.2006.11.041
- Cunningham LL Jr, Madsen MJ, Peterson G. Stereolithographic Modeling Technology Applied to Tumor Resection. Journal of Oral and Maxillofacial Surgery [Internet]. 2005 Jun;63(6):873–8. Available from: http://dx.doi.org/10.1016/j.joms.2005.02.027
- Cousley RR, Turner MJ. Digital model planning and computerized fabrication of orthognathic surgery wafers. Journal of Orthodontics [Internet]. 2014 Mar;41(1):38–45. Available from: http://dx.doi.org/10.1179/1465313313Y.0000000075
- Mazzoni S, Bianchi A, Schiariti G, Badiali G, Marchetti C. Computer-Aided Design and Computer-Aided Manufacturing Cutting Guides and Customized Titanium Plates Are Useful in Upper Maxilla Waferless Repositioning. Journal of Oral and Maxillofacial Surgery [Internet]. 2015 Apr;73(4):701–7. Available from: http://dx.doi.org/10.1016/j.joms.2014.10.028
- Shan X-F, Chen H-M, Liang J, Huang J-W, Cai Z-G. Surgical Reconstruction of Maxillary and Mandibular Defects Using a Printed Titanium Mesh. Journal of Oral and Maxillofacial Surgery [Internet]. 2015 Jul;73(7):1437.e1-1437.e9. Available from: http://dx.doi.org/10.1016/j.joms.2015.02.025
- Metzler P, Geiger EJ, Alcon A, Ma X, Steinbacher DM. Three-Dimensional Virtual Surgery Accuracy for Free Fibula Mandibular Reconstruction: Planned Versus Actual Results. Journal of Oral and Maxillofacial Surgery [Internet]. 2014 Dec;72(12):2601–12. Available from: http://dx.doi.org/10.1016/j.joms.2014.07.024
- Wulf J, Vitt K, Erben C, Bill J, Busch L. Medical biomodelling in surgical applications: results of a multicentric European validation of 466 cases. Stud Health Technol Inform. 2003 Jan 1;94:404–6
- Lim L-T, Auras R, Rubino M. Processing technologies for poly(lactic acid). Progress in Polymer Science [Internet]. 2008 Aug;33(8):820–52. Available from: http://dx.doi.org/10.1016/j.progpolymsci.2008.05.004