Published July 31, 2023 | Version v20230808
Dataset Open

Monthly aggregated Water Vapor MODIS MCD19A2 (1 km): Yearly time-series (2000-2011)

  • 1. OpenGeoHub

Description

This data is part of the Monthly aggregated Water Vapor MODIS MCD19A2 (1 km) dataset. Check the related identifiers section on the Zenodo side panel to access other parts of the dataset.

General Description

The monthly aggregated water vapor dataset is derived from MCD19A2 v061. The Water Vapor data measures the column above ground retrieved from MODIS near-IR bands at 0.94μm. The dataset time spans from 2000 to 2022 and provides data that covers the entire globe. The dataset can be used in many applications like water cycle modeling, vegetation mapping, and soil mapping. This dataset includes:

  • Monthly time-series:
    Derived from MCD19A2 v061, this data provides a monthly aggregated mean and standard deviation of daily water vapor time-series data from 2000 to 2022. Only positive non-cloudy pixels were considered valid observations to derive the mean and the standard deviation. The remaining no-data values were filled using the TMWM algorithm. This dataset also includes smoothed mean and standard deviation values using the Whittaker method. The quality assessment layers and the number of valid observations for each month can provide an indication of the reliability of the monthly mean and standard deviation values.
  • Yearly time-series:
    Derived from monthly time-series, this data provides a yearly time-series aggregated statistics of the monthly time-series data.
  • Long-term data (2000-2022):
    Derived from monthly time-series, this data provides long-term aggregated statistics for the whole series of monthly observations.

Data Details

  • Time period: 2000–2011
  • Type of data: Water vapor column above the ground (0.001cm)
  • How the data was collected or derived: Derived from MCD19A2 v061 using Google Earth Engine. Cloudy pixels were removed and only positive values of water vapor were considered to compute the statistics. The time-series gap-filling and time-series smoothing were computed using the Scikit-map Python package.
  • Statistical methods used: Four statistics were derived: standard deviation, percentiles 25, 50, and 75.
  • Limitations or exclusions in the data: The dataset does not include data for Antarctica.
  • Coordinate reference system: EPSG:4326
  • Bounding box (Xmin, Ymin, Xmax, Ymax): (-180.00000, -62.00081, 179.99994, 87.37000)
  • Spatial resolution: 1/120 d.d. = 0.008333333 (1km)
  • Image size: 43,200 x 17,924
  • File format: Cloud Optimized Geotiff (COG) format.

Support

If you discover a bug, artifact, or inconsistency, or if you have a question please use some of the following channels:

Name convention

To ensure consistency and ease of use across and within the projects, we follow the standard Open-Earth-Monitor file-naming convention. The convention works with 10 fields that describes important properties of the data. In this way users can search files, prepare data analysis etc, without needing to open files. The fields are:

  1. generic variable name: wv = Water vapor
  2. variable procedure combination: mcd19a2v061.seasconv = MCD19A2 v061 with gap-filling algorithm
  3. Position in the probability distribution / variable type: m = mean | sd = standard deviation | n = number of observations | qa = quality assessment
  4. Spatial support: 1km
  5. Depth reference: s = surface
  6. Time reference begin time: 20000101 = 2000-01-01
  7. Time reference end time: 20111231 = 2011-12-31
  8. Bounding box: go = global (without Antarctica)
  9. EPSG code: epsg.4326 = EPSG:4326
  10. Version code: v20230619 = 2023-06-19 (creation date)

Files

00_preview.png

Files (27.1 GB)

Name Size Download all
md5:2fb2fe33ba53040cd8180e1d6d594e78
111.1 kB Preview Download
md5:e0eec9c147c7cc4db285d4d35ee177fb
297.3 MB Preview Download
md5:a671232d239b098b1cbe5304aa5dd7f6
300.5 MB Preview Download
md5:b4453caefa9b8ea46bc9fee705f1cb5d
295.2 MB Preview Download
md5:34b4e25b053b10379792f65966209d05
289.8 MB Preview Download
md5:1cc7ea2551dbb5b979a2abc90ba36b82
287.9 MB Preview Download
md5:6cc601667eceacbdd3f3649e6dd7a144
290.8 MB Preview Download
md5:49d064d666bf45703ce5674858f8c809
290.7 MB Preview Download
md5:388ce30aa571be6b756b142152938391
289.5 MB Preview Download
md5:3b0a667fcde6e7bee7fac6177b98dc85
288.5 MB Preview Download
md5:9e9c7db3d30915e38374e69f126903c2
290.4 MB Preview Download
md5:2a26b054f97bdd9ee414cf4cba85602c
292.2 MB Preview Download
md5:ad6f331706c457a2164a957570e84590
290.7 MB Preview Download
md5:d484b7f7681652288cdbfba24499ce81
319.1 MB Preview Download
md5:6cb2715de2fb0c8b139a1add31cb0383
317.6 MB Preview Download
md5:08c8ee9ade2be4d91710fd20b32ebc83
311.9 MB Preview Download
md5:449714c94d3c1aa735bbd02c8e8e8255
308.7 MB Preview Download
md5:ec968a15d61c98b42833b4d2339c74f6
308.6 MB Preview Download
md5:cfcc20267c0a7afc47cfaecbe3868282
310.7 MB Preview Download
md5:af9399215b906d3e1fabc951e9c9f691
310.3 MB Preview Download
md5:eb144abe1c7f9a824de913b3553d8455
309.8 MB Preview Download
md5:a4208b2c92e47c699c57fc7270733e20
309.8 MB Preview Download
md5:eaf7a71fc76793e190ee6ee260dd4fbf
309.3 MB Preview Download
md5:caafc013d2101afbaa015c84fc3eec3b
311.9 MB Preview Download
md5:d8f83382ad2ce44e656e6767c74d383b
312.5 MB Preview Download
md5:1c7384bb63a23c315834c797c93aada9
337.4 MB Preview Download
md5:b25aaacded5bfb660f183e50db2f8510
335.8 MB Preview Download
md5:ffbabf30bccd09f78aa3113f06b90cde
332.0 MB Preview Download
md5:c3da016fc4d1837a8e51ef6c25d4420f
331.2 MB Preview Download
md5:fc6136bfed8bf80029eaeae053fa2d04
329.0 MB Preview Download
md5:bb27208877b47b6c747af85c5c71367e
330.1 MB Preview Download
md5:633321ce226c0a63de76271251b74254
330.2 MB Preview Download
md5:71351c2ba0360f6d4754dd8a4f53f389
331.5 MB Preview Download
md5:2711d0319e65448f479aae6cec70cc51
331.5 MB Preview Download
md5:7155605e6a6cb79bcc05c4bfe254ba29
330.8 MB Preview Download
md5:a39235882efaf3c43664da7112832294
333.9 MB Preview Download
md5:f0d81568d7931bb6bfd1b2bfe7e6ef8a
331.7 MB Preview Download
md5:86739ef1c235be08d73504730a4e4e42
293.0 MB Preview Download
md5:e40b055419e77e2c13d5561c092602b5
289.8 MB Preview Download
md5:be7195ac6d52b7851a937fec81c25f9b
284.3 MB Preview Download
md5:72bcbf4248306fe3e343047f10d53fa1
281.7 MB Preview Download
md5:9d989423e7155dc8dfc3199b8334ecff
279.8 MB Preview Download
md5:751ecf075e7f26c17cc31b5791a3d5f5
281.0 MB Preview Download
md5:a3b1b8957bc06a7a522cbeca53040009
283.3 MB Preview Download
md5:4d687d9b4874a7b4fe53b5a29c3cb7cc
283.9 MB Preview Download
md5:a95123ba8d40d24c6af74695601b6534
282.9 MB Preview Download
md5:6db4cd0b942dff60036bb6c16550a584
281.8 MB Preview Download
md5:bb29c1aa18cf2f3becdb051e8735dc19
286.8 MB Preview Download
md5:37b88dff17878d698789d3e40b4f9e2c
286.4 MB Preview Download
md5:4ee8aecbe6a622580be06d1b83b18966
250.0 MB Preview Download
md5:231ba463e17f465590ded3928ec800cf
251.2 MB Preview Download
md5:0b52baa35465b0548dd6f91e35925da0
248.7 MB Preview Download
md5:daaeb456078207fc860a513971bb45b5
246.6 MB Preview Download
md5:911e6d436ef7472710dd164622ff52bc
244.6 MB Preview Download
md5:06e142e5d0a923875547010101f14ea6
246.1 MB Preview Download
md5:33ef170daa7dcc67f0b42f2071dbba32
245.9 MB Preview Download
md5:74389e61d4b2a7f636854dc335d35a65
244.9 MB Preview Download
md5:e794920d60dca82e81f94b287062f2d7
244.2 MB Preview Download
md5:752f4f85e66d49f55b6778e2113c21ab
245.7 MB Preview Download
md5:609b211697326ab67e32dfe30b522301
248.9 MB Preview Download
md5:15afd443a4ddacc565a9318d7ca16d7a
246.6 MB Preview Download
md5:553fae490fb23fdc231537e6a949a3ec
272.2 MB Preview Download
md5:27766fb8d6d9c4da57937386bb8024f0
270.5 MB Preview Download
md5:a65864ddd223c16579a61ab2fd042b1d
266.8 MB Preview Download
md5:712ed6f06182983ad8f58e6ba9761cc1
264.2 MB Preview Download
md5:dbd56f4829bf2fc7d8d035c381d9e7b4
262.9 MB Preview Download
md5:71640d754fe248fdedc1700ecba7ae95
265.9 MB Preview Download
md5:cbf3fc74446396e7c3382ef15545a992
264.9 MB Preview Download
md5:93a3ccd2ade0d64ba0491d45760d6e77
264.6 MB Preview Download
md5:3661c161a1e0e1b1b9619a0a8e91f3a2
264.0 MB Preview Download
md5:7348db8ecdb73a4df40061d6c4bf492b
264.3 MB Preview Download
md5:68f94fec4e0a8ed32be80c6e9723083c
268.3 MB Preview Download
md5:2132db7365676461927b09beb11b6558
268.7 MB Preview Download
md5:158d448b281dabc5226027e29e24bbaa
289.2 MB Preview Download
md5:e8b64ea78403955563739637c40cd188
286.8 MB Preview Download
md5:88de605eb502cc73917ce02721bbf34c
285.3 MB Preview Download
md5:161b655d22753442855f9f0366a30e6e
283.5 MB Preview Download
md5:960d7deba0ccede05ba3d6841349ba36
282.5 MB Preview Download
md5:55d8133170ea933d9e0529b74ca90403
282.5 MB Preview Download
md5:1d863ee99f26d77625dd61b672c4f0cf
284.2 MB Preview Download
md5:dd82aa73a1a3fb5279f506f0f5ce5791
285.5 MB Preview Download
md5:06b79fcb3ad57530bea592f7103f8851
284.4 MB Preview Download
md5:12a74222d3c008b2260450d9252c2ac9
283.6 MB Preview Download
md5:de9b2222fd0a5e67dc7a93a5e8fff437
288.9 MB Preview Download
md5:77bfd18ca702d38b1030e0d70e6d4739
286.9 MB Preview Download
md5:c5711c364cdbb6d34aeb0155792c3924
250.0 MB Preview Download
md5:1f4b9bb1a91c2f1193833ef660c9abf7
244.8 MB Preview Download
md5:83f52a99eed78d9507c3bceb9472c9ac
241.2 MB Preview Download
md5:f886a5d100a4469a8bc210c18b007736
237.8 MB Preview Download
md5:7756e594281b41e0c769f517c9af3f8a
236.1 MB Preview Download
md5:e20ec9dfae39d58fa52909cb452508b8
236.6 MB Preview Download
md5:3c666cc82feef4d86bd82d448e384e35
239.1 MB Preview Download
md5:918da9743833b4fcc541eed146318ee7
239.2 MB Preview Download
md5:25b0fe3b79b688dfb93c0a4bc45d69f8
238.8 MB Preview Download
md5:3b1454ae1fc82f716821ededf2ea44e8
237.5 MB Preview Download
md5:e754250bcce2218495265b2a5e1ca553
243.7 MB Preview Download
md5:5ba554fc3d8b52637ddbe82f73b6d258
241.7 MB Preview Download

Additional details

Related works

Continues
Dataset: 10.5281/zenodo.8226291 (DOI)
Is continued by
Dataset: 10.5281/zenodo.8226293 (DOI)

Funding

OEMC – Open-Earth-Monitor Cyberinfrastructure 101059548
European Commission

Dates

Collected
2000-01-01/2011-12-31
Processed period.