Published November 13, 2025 | Version 2
Preprint Open

Emergence of Gravity, Dark Matter and Dark Energy from a Dissipative Higgs Field: A Unified Framework

Description

This article proposes a unified theoretical framework in which gravity, dark matter, and dark energy emerge from a dissipative extension of the Higgs field. We introduce a thermodynamic gradient field coupled to the Higgs sector, which allows: (i) gravity to emerge from Higgs fluctuations, (ii) resolution of the hierarchy problem with an improvement of 32 orders of magnitude, (iii) natural candidates for dark matter from dissipative modes, (iv) dark energy as the vacuum energy of the gradient field, and (v) determination of the cosmic topology as flat. The model compares favorably with the LCDM model using Bayesian evidence and makes testable predictions for the LHC and cosmological soundings.

Files

Emergence_of_Gravity__Dark_Matter_and_Dark_Energy_from_a_Dissipative_Higgs_Field.pdf

Files (1.2 MB)

Name Size Download all
md5:75498547f5816146633318bf53c45423
2.6 kB Download
md5:9c1fb230a2fe7d37a569b23df49d912c
2.0 kB Download
md5:b52ec88dc23e1d5ea0e3a9a415bce797
1.9 kB Download
md5:041e36be83396dcc57bbd4ff56c1855d
2.1 kB Download
md5:c1f78f4ef79c21f63def46d0e54f651f
2.3 kB Download
md5:67e50e30a21e61527ede781bf7b0ce8e
4.2 kB Preview Download
md5:bbb1342feedb803ff79db4a8e111db5d
315 Bytes Preview Download
md5:787fe7050aba660f02bb6a84ccf53384
161 Bytes Preview Download
md5:84fb6b14a077b2435da8603a4209fb8d
72 Bytes Preview Download
md5:01cf27a182ab39f7d9cd52c248e12a65
208 Bytes Preview Download
md5:b0178243342df58f1a8548e6593b8e7b
251.8 kB Preview Download
md5:c77c8360205a88c405ed48c1a10cc6dd
29.1 kB Preview Download
md5:8981fb195b211b78151f780762ef2c1a
3.7 kB Download
md5:34b04e1171394b9e67047d33a3a40b03
33.2 kB Preview Download
md5:59fbdbc9a533cf44a7e13ea838e38f53
3.5 kB Download
md5:a44adcf55ba13b9e56db27f72ef0e50f
28.5 kB Preview Download
md5:bad743e3fa5bdd29ffe4a30a8914ca54
3.1 kB Download
md5:afa94710e129b4335d6591e229b7ee30
40.7 kB Preview Download
md5:e370f3f89750822bd1fd12dfd1eb7bb1
3.5 kB Download
md5:beef9b676a6d40cfc94aa371d43fe3eb
28.0 kB Preview Download
md5:fbf14c494488de4e965da281cba7a8aa
3.1 kB Download
md5:975d51599f9bfc2f08d0189bae2f2ae8
30.0 kB Preview Download
md5:89d6cc26ba9b6db5bdfe45aa226007bc
4.2 kB Download
md5:cec470ebd04057c9661f8e4b72169fb5
25.5 kB Preview Download
md5:481a0d0c6186cee79773e3e80d818335
2.6 kB Download
md5:e8b1253036f20c78489b3ab09eddf936
2.8 kB Download
md5:e201cd12a8a14098ce9cdb9ec2a81c9d
7.4 kB Preview Download
md5:e04b79d00cae424d127ca3a95e764c5c
74 Bytes Preview Download
md5:87f00815de3fe1631a4957d260bac791
6.1 kB Preview Download
md5:78ea4ecee3fa27743be7ca0c92d14dc2
158 Bytes Preview Download
md5:1c93bba027aef4d0d8bc1d4e49fa5209
62.6 kB Preview Download
md5:a725d5cc38ba901e3f4cbcfbfd6b3fca
137 Bytes Preview Download
md5:20d17732519b591e519f7c8b4c201d96
214 Bytes Preview Download
md5:eba5d174f85b1ba068ec3990b1f0e1ce
1.0 kB Preview Download
md5:b67074d4f258b347cd29f5496a49d14f
20.0 kB Download
md5:0f2e4bac6e3df34c9ebe3207e57bfdc7
596.5 kB Preview Download
md5:301d34599e222e9b01448672d5c91be4
1.3 kB Preview Download
md5:39779cece3cb849d475284e998549835
110 Bytes Preview Download
md5:2925a8e051dc4cd903e58a13850a4b4f
44 Bytes Preview Download
md5:c953788c008069ada75793595d7a0288
389 Bytes Download
md5:e3f5648e9a8da5dba6710a637df7a8fc
2.6 kB Download
md5:295e293b7da5a78a521fdadeb787bcbf
212 Bytes Preview Download
md5:89a5fdd806be2e67e2214de7f27854a0
399 Bytes Download
md5:02dce4fb4e0e184c7341100c74e32558
826 Bytes Download

Additional details

Identifiers

Other
ORCID: 0009-0000-8079-6798

Dates

Created
2025-11-07

Software

Repository URL
https://github.com/fdoandres/Emergence-of-Gravity/releases/tag/v2.0
Programming language
Python, TeX, Shell
Development Status
Active

References

  • Prigogine, I. & Nicolis, G. Self-organization in nonequilibrium systems (Wiley, 1977).
  • Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer. Nature 191, 144–148 (1961).
  • Connes, A. Noncommutative geometry. Academic Press (1994).
  • Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).
  • Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989).
  • Higgs, P. W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964).
  • Riess, A. G. et al. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM Astrophys. J. 876, 85 (2019).
  • Abdalla, E. et al. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies J. High Energ. Astrophys. 34, 49 (2022).
  • Heymans, C. et al. KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints Astron. Astrophys. 646, A140 (2021).
  • Weinberg, S. 1989, Rev. Mod. Phys., 61, 1
  • Bertone, G., Hooper, D., & Silk, J. 2005, Phys. Rept., 405, 279
  • Peebles, P. J. E., & Ratra, B. 2003, Rev. Mod. Phys., 75, 559
  • Scolnic, D. M., et al. 2018, ApJ, 859,
  • Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, Astrophysics Source Code Library, ascl:1303.002
  • Skilling, J. 2006, Bayesian Analysis, 1, 833