Fast Calorimeter Simulation Challenge 2022 - Submissions Dataset 2
Creators
-
Faucci Giannelli, Michele1
-
Kasieczka, Gregor2
-
Krause, Claudius3
-
Nachman, Benjamin4, 5
-
Salamani, Dalila6
-
Shih, David7
-
Zaborowska, Anna8
-
Amram, Oz9
-
Borras, Kerstin10
-
Buckley, Matthew7
-
Buss, Thorsten2, 10
- Da Costa Cardoso, Renato Paulo8
-
Ekambaram, Vijay11
-
Ernst, Florian8, 12
-
Favaro, Luigi12
-
Gaede, Frank10
-
Hsu, Shih-Chieh13, 14
-
Jaruskova, Kristina8
-
Käch, Benno10
-
Kalagnanam, Jayant15
-
Krücker, Dirk10
-
Liu, Qibin16, 13
-
Liu, Xiulong13
-
Madula, Thandikire17
-
Melzer-Pellmann, Isabell-Alissandra10
-
Mikuni, Vinicius18
- Nguyen, Nam15
-
Ore, Ayodele12
-
Palacios Schweitzer, Sofia12
-
Pang, Ian7
-
Pedro, Kevin9
-
Plehn, Tilman12
- Raikwar, Piyush8
-
Raine, John6
-
Scham, Moritz Alfons Wilhelm10, 19
-
Schnake, Simon10
-
Shimmin, Chase20
-
Shlizerman, Eli13
- Shu, Li16
-
Srivatsa, Mudhakar15
-
Vallecorsa, Sofia8
-
Yeo, Kyongmin15
-
1.
Chalmers University of Technology
-
2.
Universität Hamburg
-
3.
Austrian Academy of Sciences
-
4.
SLAC National Accelerator Laboratory
-
5.
Stanford University
-
6.
University of Geneva
-
7.
Rutgers, The State University of New Jersey
-
8.
European Organization for Nuclear Research
-
9.
Fermi National Accelerator Laboratory
-
10.
Deutsches Elektronen-Synchrotron DESY
-
11.
IBM Research - India
-
12.
Heidelberg University
- 13. University of Washington
-
14.
National Tsing Hua University
-
15.
IBM Research - Thomas J. Watson Research Center
-
16.
Shanghai Jiao Tong University
-
17.
University College London
-
18.
National Energy Research Scientific Computing Center
-
19.
Forschungszentrum Jülich
- 20. Yale University
Description
These are all the submitted samples to dataset 2 of the “Fast Calorimeter Simulation Challenge 2022”. They each consist of 100k calorimeter showers of electrons with energies sampled from a log-uniform distribution ranging from 1 GeV to 1 TeV.
The training data (based on Geant4) can be found at https://doi.org/10.5281/zenodo.6366271 the paper describing the results is available on arXiv:2410.21611, and further details, in particular helper scripts to parse the data and calculate and visualize basic high-level physics features, are available at https://calochallenge.github.io/homepage/.
The subscripts in the file names corresponds to the individual submissions:
| ID number | Submission name | Original reference |
| _1 | CaloDiffusion | arXiv:2308.03876 |
| _3 | conv. L2LFlows | arXiv:2405.20407 |
| _4 | CaloINN | arXiv:2312.09290 |
| _5 | MDMA | arXiv:2305.15254 arXiv:2408.04997 |
| _7 | Calo-VQ | arXiv:2405.06605 |
| _8 | CaloScore | arXiv:2206.11898, arXiv:2308.03847 |
| _9 | CaloScore distilled | arXiv:2206.11898, arXiv:2308.03847 |
| _10 | CaloScore single-shot | arXiv:2206.11898, arXiv:2308.03847 |
| _13 | iCaloFlow teacher | arXiv:2305.11934 |
| _14 | iCaloFlow student | arXiv:2305.11934 |
| _15 | SuperCalo | arXiv:2308.11700 |
| _22 | DeepTree | arXiv:2311.12616, arXiv:2312.00042 |
| _23 | CaloPointFlow | arXiv:2403.15782 |
| _27 | CaloVAE+INN | arXiv:2312.09290 |
| _30 | CaloLatent | ML4PS@NeurIPS |
| _32 | CaloDiT | ACAT |
| _33 | CaloDREAM | arXiv:2405.09629 |
The samples here can be used to reproduce the results of arXiv:2410.21611 and as benchmarks for new models after the challenge concluded.
Files
Files
(13.9 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:c5e4827faffce1ac0aeea7749de5f9f3
|
739.1 MB | Download |
|
md5:430c1dee23b46343e4acfa41f6079144
|
759.4 MB | Download |
|
md5:59ed21469e376a69436a7775c7f0b322
|
725.8 MB | Download |
|
md5:5dff5a57b37603b5f63ed809cdc82b09
|
725.9 MB | Download |
|
md5:e1dc931e92589f3cced2f6983e8af7ee
|
725.9 MB | Download |
|
md5:8ad8a812ad621248e11ca27debf358e8
|
686.3 MB | Download |
|
md5:d364fec36ca0c715b26cbdf30c76e1ea
|
707.0 MB | Download |
|
md5:0cf64c86d46ed8ced458477446587fdd
|
1.3 GB | Download |
|
md5:019effa4af6cef164bf45c798ab84f47
|
717.5 MB | Download |
|
md5:d7993d62f5f7fc2e64a77d8ae3fd8420
|
789.1 MB | Download |
|
md5:053192b7e062ec80ed5ed4c7cd391c8a
|
680.7 MB | Download |
|
md5:fd1d66db6e17ec8dd25c1f65f34a3d9f
|
727.9 MB | Download |
|
md5:a1d25f85d84e2f17e67700c1c3904621
|
707.8 MB | Download |
|
md5:1e9b134ffbe7f37665cba4cc6cad53bb
|
571.3 MB | Download |
|
md5:d625fcbaf007c51f9e1c2adbd8fa847e
|
1.9 GB | Download |
|
md5:6e2871ec4adb9541109e24de328087d2
|
736.3 MB | Download |
|
md5:ddd297d6cecb57b6694a0c78a851dcf1
|
765.7 MB | Download |
Additional details
Identifiers
- arXiv
- arXiv:2410.21611
Related works
- Is derived from
- Dataset: 10.5281/zenodo.6366271 (DOI)
- Is supplement to
- Dataset: 10.5281/zenodo.15961728 (DOI)
- Dataset: 10.5281/zenodo.15961924 (DOI)
- Dataset: 10.5281/zenodo.15962527 (DOI)
Software
- Repository URL
- https://github.com/CaloChallenge/homepage