Published June 1, 2025 | Version v1
Dataset Open

Fast Calorimeter Simulation Challenge 2022 - Submissions Dataset 1 Pions

  • 1. ROR icon Chalmers University of Technology
  • 2. ROR icon Universität Hamburg
  • 3. ROR icon Austrian Academy of Sciences
  • 4. ROR icon SLAC National Accelerator Laboratory
  • 5. ROR icon Stanford University
  • 6. ROR icon University of Geneva
  • 7. ROR icon Rutgers, The State University of New Jersey
  • 8. ROR icon European Organization for Nuclear Research
  • 9. ROR icon Fermi National Accelerator Laboratory
  • 10. ROR icon Heidelberg University
  • 11. Layer 6 AI
  • 12. Università degli Studi di Bologna Dipartimento di Fisica e Astronomia 'Augusto Righi'
  • 13. ROR icon Weizmann Institute of Science
  • 14. Universita di Bologna
  • 15. University of Washington
  • 16. ROR icon National Tsing Hua University
  • 17. ROR icon University of Genoa
  • 18. ROR icon Shanghai Jiao Tong University
  • 19. Yale University
  • 20. ROR icon University of Wisconsin–Madison

Description

These are all the submitted samples to dataset 1 (pions) of the “Fast Calorimeter Simulation Challenge 2022”. They each consist of 120,800 calorimeter showers of pions with energies ranging from 256 MeV to 4.2 TeV.

The training data (based on Geant4) can be found at  https://doi.org/10.5281/zenodo.8099322 the paper describing the results is available on arXiv:2410.21611, and further details, in particular helper scripts to parse the data and calculate and visualize basic high-level physics features, are available at https://calochallenge.github.io/homepage/.

The subscripts in the file names corresponds to the individual submissions: 

ID number Submission name Original reference
_1 CaloDiffusion arXiv:2308.03876
_4 CaloINN arXiv:2312.09290
_7 Calo-VQ arXiv:2405.06605
_11 CaloFlow teacher arXiv:2210.14245
_12 CaloFlow student arXiv:2210.14245
_16 CaloMan arXiv:2211.15380
_17 BoloGAN ATL-SOFT-PUB-2020-006
_20 DNNCaloSim thesis, arXiv:2210.06204
_24 CaloShowerGAN arXiv:2309.06515
_27 CaloVAE+INN arXiv:2312.09290
_28 CaloForest arXiv:2408.16046
_29 CaloGraph arxiv:2402.11575

The samples here can be used to reproduce the results of arXiv:2410.21611 and as benchmarks for new models after the challenge concluded.

 

Files

Files (1.9 GB)

Name Size Download all
md5:ec4acc20697ccdde430328ca5b77c3fc
137.8 MB Download
md5:84b5237fc30f21c579fa2690397e5e27
113.8 MB Download
md5:51c5367d7dc5fa12fd852d6d0bc7cc3a
118.8 MB Download
md5:8b6b1d6f7ebbb556ae41d29cfe4ca7c0
188.3 MB Download
md5:081fcd8e3ac64e073bed2c83f3f251c1
60.3 MB Download
md5:9700c4edc9a8ce1d098e30fe6cb50ae6
245.0 MB Download
md5:8d41fc36b9b6f12a2c6844ce5573fd50
243.7 MB Download
md5:bce5aa019ea8d0c1fc1443bdb626cda8
155.3 MB Download
md5:705c4454695ce50dd472deb4f95a23c2
190.5 MB Download
md5:bdc20224bb1e39ec9397297c13ce0abd
115.2 MB Download
md5:f71047dbe9fc798db03ab1b898fb4be0
114.8 MB Download
md5:7cc461f0cccb62b345e1b6fa24cac47a
204.6 MB Download

Additional details

Identifiers

Related works

Is derived from
Dataset: 10.5281/zenodo.8099322 (DOI)
Is supplement to
Dataset: 10.5281/zenodo.15961728 (DOI)
Dataset: 10.5281/zenodo.15962050 (DOI)
Dataset: 10.5281/zenodo.15962527 (DOI)