Fast Calorimeter Simulation Challenge 2022 - Submissions Dataset 1 Photons
Creators
-
Faucci Giannelli, Michele1
-
Kasieczka, Gregor2
-
Krause, Claudius3
-
Nachman, Benjamin4, 5
-
Salamani, Dalila6
-
Shih, David7
-
Zaborowska, Anna8
-
Amram, Oz9
-
Caterini, Anthony10
-
Corchia, Federico Andrea Guillaume11
-
Cresswell, Jesse10
-
Dreyer, Etienne12
-
Ernst, Florian8, 13
-
Favaro, Luigi13
-
Franchini, Matteo14
-
Gross, Eilam12
-
Hsu, Shih-Chieh15, 16
-
Kim, Taewoo10
-
Kobylianskii, Dmitrii12
-
Letizia, Marco17
-
Liu, Qibin18, 15
-
Liu, Xiulong15
- Loaiza-Ganem, Gabriel10
-
Mikuni, Vinicius19
-
Pang, Ian7
-
Pedro, Kevin9
-
Plehn, Tilman13
-
Reyes-González, Humberto17
-
Rinaldi, Lorenzo11
-
Ross, Brendan Leigh10
-
Shimmin, Chase20
-
Shlizerman, Eli15
- Shu, Li18
-
Soybelman, Nathalie12
-
Zhang, Rui21
-
1.
Chalmers University of Technology
-
2.
Universität Hamburg
-
3.
Austrian Academy of Sciences
-
4.
SLAC National Accelerator Laboratory
-
5.
Stanford University
-
6.
University of Geneva
-
7.
Rutgers, The State University of New Jersey
-
8.
European Organization for Nuclear Research
-
9.
Fermi National Accelerator Laboratory
- 10. Layer 6 AI
- 11. Università degli Studi di Bologna Dipartimento di Fisica e Astronomia 'Augusto Righi'
-
12.
Weizmann Institute of Science
-
13.
Heidelberg University
- 14. Universita di Bologna
- 15. University of Washington
-
16.
National Tsing Hua University
-
17.
University of Genoa
-
18.
Shanghai Jiao Tong University
-
19.
National Energy Research Scientific Computing Center
- 20. Yale University
-
21.
University of Wisconsin–Madison
Description
These are all the submitted samples to dataset 1 (photons) of the “Fast Calorimeter Simulation Challenge 2022”. They each consist of 121,000 calorimeter showers of photons with energies ranging from 256 MeV to 4.2 TeV.
The training data (based on Geant4) can be found at https://doi.org/10.5281/zenodo.8099322 the paper describing the results is available on arXiv:2410.21611, and further details, in particular helper scripts to parse the data and calculate and visualize basic high-level physics features, are available at https://calochallenge.github.io/homepage/.
The subscripts in the file names corresponds to the individual submissions:
| ID number | Submission name | Original reference |
| _1 | CaloDiffusion | arXiv:2308.03876 |
| _4 | CaloINN | arXiv:2312.09290 |
| _7 | Calo-VQ | arXiv:2405.06605 |
| _8 | CaloScore | arXiv:2206.11898, arXiv:2308.03847 |
| _9 | CaloScore distilled | arXiv:2206.11898, arXiv:2308.03847 |
| _10 | CaloScore single-shot | arXiv:2206.11898, arXiv:2308.03847 |
| _11 | CaloFlow teacher | arXiv:2210.14245 |
| _12 | CaloFlow student | arXiv:2210.14245 |
| _16 | CaloMan | arXiv:2211.15380 |
| _17 | BoloGAN | ATL-SOFT-PUB-2020-006 |
| _25 | CaloShower2GAN | arXiv:2309.06515 |
| _26 | CaloShower3GAN | arXiv:2309.06515 |
| _27 | CaloVAE+INN | arXiv:2312.09290 |
| _28 | CaloForest | arXiv:2408.16046 |
| _29 | CaloGraph | arxiv:2402.11575 |
The samples here can be used to reproduce the results of arXiv:2410.21611 and as benchmarks for new models after the challenge concluded.
Files
Files
(2.1 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:ae6d53cd4249a1ce6e0768b2a28fc173
|
127.7 MB | Download |
|
md5:7181399ec8e2b0947a3462f3fc579a47
|
125.3 MB | Download |
|
md5:a3706c62395b1e9379b318c29df163ae
|
118.5 MB | Download |
|
md5:2785925412bd6bef7883d2120ad766ff
|
118.9 MB | Download |
|
md5:412097d3c5bc737578b21848c5cd42ea
|
161.8 MB | Download |
|
md5:bf9fc7e0ffc1c368896375567596c45c
|
118.7 MB | Download |
|
md5:67b4f45f26839cf2368da63e82a0383e
|
168.9 MB | Download |
|
md5:1db9b6bcb7f4083d6d3d477985d6f3a6
|
168.3 MB | Download |
|
md5:aacd96cb74a49c894018ae29c8c480b3
|
140.1 MB | Download |
|
md5:ebd72b07ec7525142058d1d8de4ed6b3
|
153.0 MB | Download |
|
md5:6d49918f8b01372cce635b85fddce80b
|
123.0 MB | Download |
|
md5:07aed78ade82db769d832fefc938fe24
|
121.4 MB | Download |
|
md5:a1f374ddf895c297cf02e4f01535540c
|
167.0 MB | Download |
|
md5:f6f3309f13c987aaa909012a878c0cf7
|
123.7 MB | Download |
|
md5:a0c2cd7c57326672c0c8e37eda4e43aa
|
124.3 MB | Download |
Additional details
Identifiers
- arXiv
- arXiv:2410.21611
Related works
- Is derived from
- Dataset: 10.5281/zenodo.8099322 (DOI)
- Is supplement to
- Dataset: 10.5281/zenodo.15961924 (DOI)
- Dataset: 10.5281/zenodo.15962050 (DOI)
- Dataset: 10.5281/zenodo.15962527 (DOI)
Software
- Repository URL
- https://github.com/CaloChallenge/homepage