Published June 1, 2025 | Version v1
Dataset Open

Fast Calorimeter Simulation Challenge 2022 - Submissions Dataset 1 Photons

  • 1. ROR icon Chalmers University of Technology
  • 2. ROR icon Universität Hamburg
  • 3. ROR icon Austrian Academy of Sciences
  • 4. ROR icon SLAC National Accelerator Laboratory
  • 5. ROR icon Stanford University
  • 6. ROR icon University of Geneva
  • 7. ROR icon Rutgers, The State University of New Jersey
  • 8. ROR icon European Organization for Nuclear Research
  • 9. ROR icon Fermi National Accelerator Laboratory
  • 10. Layer 6 AI
  • 11. Università degli Studi di Bologna Dipartimento di Fisica e Astronomia 'Augusto Righi'
  • 12. ROR icon Weizmann Institute of Science
  • 13. ROR icon Heidelberg University
  • 14. Universita di Bologna
  • 15. University of Washington
  • 16. ROR icon National Tsing Hua University
  • 17. ROR icon University of Genoa
  • 18. ROR icon Shanghai Jiao Tong University
  • 19. ROR icon National Energy Research Scientific Computing Center
  • 20. Yale University
  • 21. ROR icon University of Wisconsin–Madison

Description

These are all the submitted samples to dataset 1 (photons) of the “Fast Calorimeter Simulation Challenge 2022”. They each consist of 121,000 calorimeter showers of photons with energies ranging from 256 MeV to 4.2 TeV.

The training data (based on Geant4) can be found at  https://doi.org/10.5281/zenodo.8099322 the paper describing the results is available on arXiv:2410.21611, and further details, in particular helper scripts to parse the data and calculate and visualize basic high-level physics features, are available at https://calochallenge.github.io/homepage/.

The subscripts in the file names corresponds to the individual submissions: 

ID number Submission name Original reference
_1 CaloDiffusion arXiv:2308.03876
_4 CaloINN arXiv:2312.09290
_7 Calo-VQ arXiv:2405.06605
_8 CaloScore arXiv:2206.11898, arXiv:2308.03847
_9 CaloScore distilled arXiv:2206.11898, arXiv:2308.03847
_10 CaloScore single-shot arXiv:2206.11898, arXiv:2308.03847
_11 CaloFlow teacher arXiv:2210.14245
_12 CaloFlow student arXiv:2210.14245
_16 CaloMan arXiv:2211.15380
_17 BoloGAN ATL-SOFT-PUB-2020-006
_25 CaloShower2GAN arXiv:2309.06515
_26 CaloShower3GAN arXiv:2309.06515
_27 CaloVAE+INN arXiv:2312.09290
_28 CaloForest arXiv:2408.16046
_29 CaloGraph arxiv:2402.11575

The samples here can be used to reproduce the results of arXiv:2410.21611 and as benchmarks for new models after the challenge concluded.  

 

Files

Files (2.1 GB)

Name Size Download all
md5:ae6d53cd4249a1ce6e0768b2a28fc173
127.7 MB Download
md5:7181399ec8e2b0947a3462f3fc579a47
125.3 MB Download
md5:a3706c62395b1e9379b318c29df163ae
118.5 MB Download
md5:2785925412bd6bef7883d2120ad766ff
118.9 MB Download
md5:412097d3c5bc737578b21848c5cd42ea
161.8 MB Download
md5:bf9fc7e0ffc1c368896375567596c45c
118.7 MB Download
md5:67b4f45f26839cf2368da63e82a0383e
168.9 MB Download
md5:1db9b6bcb7f4083d6d3d477985d6f3a6
168.3 MB Download
md5:aacd96cb74a49c894018ae29c8c480b3
140.1 MB Download
md5:ebd72b07ec7525142058d1d8de4ed6b3
153.0 MB Download
md5:6d49918f8b01372cce635b85fddce80b
123.0 MB Download
md5:07aed78ade82db769d832fefc938fe24
121.4 MB Download
md5:a1f374ddf895c297cf02e4f01535540c
167.0 MB Download
md5:f6f3309f13c987aaa909012a878c0cf7
123.7 MB Download
md5:a0c2cd7c57326672c0c8e37eda4e43aa
124.3 MB Download

Additional details

Identifiers

Related works

Is derived from
Dataset: 10.5281/zenodo.8099322 (DOI)
Is supplement to
Dataset: 10.5281/zenodo.15961924 (DOI)
Dataset: 10.5281/zenodo.15962050 (DOI)
Dataset: 10.5281/zenodo.15962527 (DOI)