Published April 9, 2025 | Version 1
Dataset Restricted

Database of the blue carbon inventory in Spain and Portugal. Organic carbon biomass and soil stocks and sequestration rates to the soil.

  • 1. EDMO icon University of Vigo
  • 2. ROR icon Consejo Superior de Investigaciones Científicas
  • 3. Centre of Marine Sciences of Algarve
  • 4. ROR icon Centre d'Estudis Avançats de Blanes
  • 5. EDMO icon ULPGC, ECOAQUA Institute, University of Las Palmas de Gran Canaria
  • 6. ROR icon Universidad de Cantabria
  • 7. AZTI
  • 8. Universidade de Santiago de Compostela
  • 9. Universidad de Santiago de Compostela
  • 10. BIOSFERA Research & Conservation S.L.
  • 11. ROR icon University of Aveiro
  • 12. University of Valencia
  • 13. Instituto para el Crecimiento Sostenible de la Empresa (ICSEM). Spain
  • 14. Universidad de Cádiz
  • 15. ROR icon Universitat de Barcelona
  • 16. Stable isotopes biogeochemistry lab, IACT-CSIC
  • 17. School of Natural Sciences, Technology and Environmental Studies, Södertörn University
  • 18. Aarhus University
  • 19. Fundación AZTI
  • 20. ROR icon Universitat Autònoma de Barcelona
  • 21. Fundació Alive
  • 22. BIOSFERA
  • 23. Universidad de Las Palmas de Gran Canaria Facultad de Filología
  • 24. ROR icon Edith Cowan University
  • 25. EDMO icon University of Aveiro, Centre for Environmental and Marine Studies
  • 26. ROR icon University of Lisbon
  • 27. ROR icon Centro de Ciências do Mar do Algarve
  • 28. ROR icon Université de Corse Pascal Paoli
  • 29. ROR icon Universitat de València
  • 30. ROR icon University of Coimbra
  • 31. Environmental Hydraulic Institute, IHCantabria
  • 32. ROR icon University of Gothenburg
  • 33. Cavanilles Institute of Biodiversity and Evolutionary Biology
  • 34. Universidade de Vigo
  • 35. Department of Marine Sciences, University of Gothenburg, Sweden
  • 36. University of Algarve
  • 37. Parc Natural del Montgrí
  • 38. Regional Activity Centre for Specially Protected Areas (SPA/RAC)

Description

This database is a compilation of published and unpublished data used to estimate (i) the organic carbon biomass stocks, (ii) the soil organic carbon stock, and (iii) the rates of organic carbon sequestration to the soil associated to Spanish and Portuguese seagrass meadows and salt marshes.

The database is presented in five .csv files. Specific .csv files content:

 

1) General Information:

Site ID: ID of the location where the samples were collected

Locality: Locality where the samples were collected

Region: Spanish or Portuguese region where the samples were collected

Coast: Spanish or Portuguese coast where the samples were collected

Ecosystem: Type of blue carbon ecosystem

Predominant Species: Predominant species at the sampling location

Tidal Range: Tidal range at the sampling location. Intertidal and subtidal for seagrass meadows and Low, Medium, High and Microtidal for Salt Marshes

Sampling Year (yr): Year in which the sample was collected

Latitude (decimal degrees, WGS84): Latitude of sampling station.

Longitude (decimal degrees, WGS84): Longitude of sampling station.

Water Depth (m): Water column depth at sampling station

Reference: Publications where the data has been used

Researcher: Name of the person responsible for the data.

Contact: Email contact of person responsible for the data.

 

2) Biomass:

Site ID: ID of the location where the samples were collected

Sample ID: ID of the sample

Ecosystem: Type of blue carbon ecosystem

Species: Predominant species at the sampling location

Month: Month of the year in which the sample was collected

Abovegr DW (km m-2): Aboveground biomass dry weight

Abovegr sd (km m-2): Standard deviation of the aboveground biomass dry weight

Abovegr (n): Number of samples of the aboveground biomass dry weight

Belowgr DW (km m-2): Belowground biomass dry weight

Belowgr sd (km m-2): Standard deviation of the belowground biomass dry weight

Belowgr (n): Number of subsamples of the belowground biomass dry weight

 

3) Soil:

Site ID:  ID of the location where the samples were collected

Core ID: ID of the soil core

Ecosystem: Type of blue carbon ecosystem

Dominant Species: Predominant species at the sampling location

Tidal Range (m): Tidal range at the sampling location. Intertidal and subtidal for seagrass meadows and Low, Medium, High and Microtidal for Salt Marshes

Year of sampling (yr): Year in which the sample was collected

Core Compression (%): Percentage of compression due to core extraction

Min depth (compacted, cm): Start depth of the sediment interval. Uncorrected for compression.

Max depth (compacted, cm): End depth of the sediment interval. Uncorrected for compression.

Dry Weight (g dw): Mass of dried sediment

Dry bulk density (g dw cm-3): Mass of dried sediment to the total volume

Organic matter (% dw): Percentage of organic matter in the sediment sample (based on dry weight)

Organic carbon (% dw): Percentage of organic carbon in the sediment sample (based on dry weight)

Estimated Age (years from sampling): Estimated age of the sediment

Raw dates: Dates used to estimate age of the sediment

Dating method: Dating method

 

4) OC Plant:

Site ID: ID of the location where the samples were collected

Sample ID: ID of the sample

Ecosystem: Type of blue carbon ecosystem

Species: Predominant species at the sampling location

Tissue: Tissues used to estimate the carbon content

TOC (%): Percentage of carbon in the plant sample (based on dry weight)

TOC sd: Standard deviation of the percentage of carbon in the plant sample (based on dry weight)

 

5) Published: published data from the studied categories (Posidonia oceanica, Zostera marina, Zostera noltii, Cymodocea nodosa, and Low, Medium, High and Microtidal salt marshes) from outside Spain and Portugal

Ecosystem: Type of blue carbon ecosystem

Tidal Range: Tidal range at the sampling location. Intertidal and subtidal for seagrass meadows and Low, Medium, High and Microtidal for Salt Marshes

Genus: Predominant genus

Species: Predominant species at the sampling location

Seagrass type: Seagrass type following the classification of Kilminster et al. 2015 (https://doi.org/10.1016/j.scitotenv.2015.04.061): Persistent, classification and opportunistic.

Latitude (decimal degrees, WGS84): Latitude of sampling station.

Longitude (decimal degrees, WGS84): Longitude of sampling station.

Abovegr DW (kg dw m-2): Aboveground biomass dry weight

Abovegr OC stock (kg dw OC m-2): Organic carbon stock in the aboveground biomass

SE Abovegr OC stock (kg dw OC m-2): Standard error of the aboveground biomass organic carbon stock

SD Abovegr OC stock (kg dw OC m-2): Standard deviation of the aboveground biomass organic carbon stock

Abovegr OC stock n: Number of subsamples of the aboveground biomass organic carbon stocks

Soil Stock 1m (kg dw OC m-2): Soil organic carbon stocks at 1m depth

SE Soil Stock 1m (kg dw OC m-2): Standard error of the soil organic carbon stocks at 1m depth

SD Soil Stock 1m (kg dw OC m-2): Standard deviation of the soil organic carbon stocks at 1m depth

Soil Stock (n): Number of cores used to estimate the soil organic carbon stocks at 1m depth

OC sequestration rate (kg dw OC m-2 yr-1): Average organic carbon sequestration rates

OC sequestration rate SE (kg dw OC m-2 yr-1): Standard error of the average organic carbon sequestration rates

Time frame (years): Time frame used to estimate the average organic carbon sequestration rates

OC sequestration rate last 100 years (kg dw OC m-2 yr-1): Average organic carbon sequestration rates in the last 100 years

OC sequestration rate last 100 SE (kg dw OC m-2 yr-1): Standard error of the average organic carbon sequestration rates in the last 100 years

OC sequestration rate last 100 (n): Number of cores used to estimate the average organic carbon sequestration rates in the last 100 years

Reference: DOI of the data origin

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Additional details

Funding

Ministerio de Ciencia, Innovación y Universidades
GAME-CSIC-632711
Ministerio de Ciencia, Innovación y Universidades
SGR-00405
Ministerio de Ciencia, Innovación y Universidades
G3ECA - RED2024-153711-E
Ministerio de Ciencia, Innovación y Universidades
JDC2022-048342-I
Ministerio de Ciencia, Innovación y Universidades
PID2023-151732OA-I00
Ministerio de Ciencia, Innovación y Universidades
RYC2022-036196-I
Ministerio de Ciencia, Innovación y Universidades
FPU21/04314
Ministerio de Ciencia, Innovación y Universidades
PID2019-104742RB-I00
Ministerio de Ciencia, Innovación y Universidades
PDC2022–133205–I00
Ministerio de Ciencia, Innovación y Universidades
TED2021-132132B-C22
Ministerio de Ciencia, Innovación y Universidades
CEX2021-001198
Ministerio de Ciencia, Innovación y Universidades
TED2021-129973B-I00
Xunta de Galicia
ED481A-2020/199
Fundação para a Ciência e Tecnologia
UIDB/50017/2020
Fundação para a Ciência e Tecnologia
UIDP/50017/2020
Fundação para a Ciência e Tecnologia
LA/P/0094/2020
Fundação para a Ciência e Tecnologia
UIDB/04326/2020
Fundação para a Ciência e Tecnologia
LA/P/0101/2020
Fundação para a Ciência e Tecnologia
2020.03825.CEECIND
Fundação para a Ciência e Tecnologia
UID/50019/2025
Fundação para a Ciência e Tecnologia
LA/P/0068/2020
Fundação para a Ciência e Tecnologia
LA/P/0069/2020
Fundação para a Ciência e Tecnologia
UIDB/04292/2020

References

  • Alexandre A, Santos R (2020) Nutrition of the seagrass Cymodocea nodosa: Pulses of ammonium but not of phosphate are crucial to sustain the species growth. Marine Environmental Research 158:104954. https://doi.org/10.1016/j.marenvres.2020.104954
  • Bañolas G, Fernández S, Espino F, et al (2020) Evaluation of carbon sinks by the seagrass Cymodocea nodosa at an oceanic island: Spatial variation and economic valuation. Ocean and Coastal Management 187:. https://doi.org/10.1016/j.ocecoaman.2020.105112
  • Barañano C, Fernández E, Morán P, et al (2022) Population dynamics of a fragmented subtidal Zostera marina population affected by shell fishing. Estuarine, Coastal and Shelf Science 269:107818. https://doi.org/10.1016/j.ecss.2022.107818
  • Belshe EF, Sanjuan J, Leiva-Dueñas C, et al (2019) Modeling organic carbon accumulation rates and residence times in coastal vegetated ecosystems. Journal of Geophysical Research: Biogeosciences 124:3652–3671. https://doi.org/10.1029/2019jg005233
  • Benito I, Onaindia M (1991) Biomass and aboveground production of four angiosperms in Cantabrian (N. Spain) salt marshes. Vegetatio 96:165–175. https://doi.org/10.1007/BF00044977
  • Cabaço S, Machás R, Santos R (2009) Individual and population plasticity of the seagrass Zostera noltii along a vertical intertidal gradient. Estuarine, Coastal and Shelf Science 82:301–308. https://doi.org/10.1016/j.ecss.2009.01.020
  • Cabaço S, Machás R, Vieira V, Santos R (2008) Impacts of urban wastewater discharge on seagrass meadows (Zostera noltii). Estuarine, Coastal and Shelf Science 78:1–13. https://doi.org/10.1016/j.ecss.2007.11.005
  • Cabaço S, Santos R (2007) Effects of burial and erosion on the seagrass Zostera noltii. Journal of Experimental Marine Biology and Ecology 340:204–212. https://doi.org/10.1016/j.jembe.2006.09.003
  • Carrasco-Barea L, Verdaguer D, Gispert M, et al (2023) Carbon Stocks in Vegetation and Soil and Their Relationship with Plant Community Traits in a Mediterranean Non-tidal Salt Marsh. Estuaries and Coasts 46:376–387. https://doi.org/10.1007/s12237-022-01155-w
  • Castillo JM, Leira-Doce P, Rubio-Casal AE, Figueroa E (2008) Spatial and temporal variations in aboveground and belowground biomass of Spartina maritima (small cordgrass) in created and natural marshes. Estuarine, Coastal and Shelf Science 78:819–826. https://doi.org/10.1016/j.ecss.2008.02.021
  • Cleary DFR, Oliveira V, Gomes NCM, et al (2012) Impact of sampling depth and plant species on local environmental conditions, microbiological parameters and bacterial composition in a mercury contaminated salt marsh. Marine Pollution Bulletin 64:263–271. https://doi.org/10.1016/j.marpolbul.2011.11.020
  • Como S, Magni P, Casu D, et al (2007) Sediment characteristics and macrofauna distribution along a human-modified inlet in the Gulf of Oristano (Sardinia, Italy). Marine Pollution Bulletin 54:733–744. https://doi.org/10.1016/j.marpolbul.2007.01.007
  • Costa V, Serôdio J, Lillebø AI, Sousa AI (2021) Use of hyperspectral reflectance to non-destructively estimate seagrass Zostera noltei biomass. Ecological Indicators 121:107018. https://doi.org/10.1016/j.ecolind.2020.107018
  • Cozzolino L, Nicastro KR, Zardi GI, de los Santos CB (2020) Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitats. Science of the Total Environment 723:138018. https://doi.org/10.1016/j.scitotenv.2020.138018
  • Cunha AH, Duarte CM (2007) Biomass and leaf dynamics of Cymodocea nodosa in the Ria Formosa lagoon, South Portugal. Botanica Marina 50:1–7. https://doi.org/doi:10.1515/BOT.2007.001
  • Curcó A, Ibàñez C, Day JW, Prat N (2002) Net primary production and decomposition of salt marshes of the Ebre delta (Catalonia, Spain). Estuaries 25:309–324. https://doi.org/10.1007/bf02695976
  • Dahl M, Deyanova D, Gütschow S, et al (2016) Sediment properties as important predictors of carbon storage in Zostera marina meadows: A comparison of four European areas. PLoS ONE 11:1–21. https://doi.org/10.1371/journal.pone.0167493
  • de Vries M, van der Wal D, Möller I, et al (2018) Earth Observation and the Coastal Zone: from global images to local information. FP7 FAST project syntesis report. Zenodo
  • Duarte B, Valentim JM, Dias JM, et al (2014) Modelling sea level rise (SLR) impacts on salt marsh detrital outwelling C and N exports from an estuarine coastal lagoon to the ocean (Ria de Aveiro, Portugal). Ecological Modelling 289:36–44. https://doi.org/10.1016/j.ecolmodel.2014.06.020
  • Freitas A, Dias JM, Lopes CL (2024) Application of remote sensing methods for monitoring extent, condition and blue carbon storage in salt marshes. Remote Sensing Applications: Society and Environment 35:101226. https://doi.org/10.1016/j.rsase.2024.101226
  • Güsewell S (2005) Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Functional Ecology 19:344–354. https://doi.org/10.1111/j.0269-8463.2005.00967.x
  • Lillebø AI, Pardal MA, Neto JM, Marques JC (2003) Salinity as the major factor affecting Scirpus maritimus annual dynamics: Evidence from field data and greenhouse experiment. Aquatic Botany 77:111–120. https://doi.org/10.1016/S0304-3770(03)00088-3
  • Machás R, Santos R, Peterson B (2006) Elemental and stable isotope composition of Zostera noltii (Horneman) leaves during the early phases of decay in a temperate mesotidal lagoon. Estuarine, Coastal and Shelf Science 66:21–29. https://doi.org/10.1016/j.ecss.2005.07.018
  • Marbà N, Duarte CM (2001) Growth and sediment space occupation by seagrass Cymodocea nodosa roots. Marine Ecology Progress Series 224:291–298. https://doi.org/10.3354/meps224291
  • Martínez-Crego B, Arteaga P, Tomas F, Santos R (2016) The Role of Seagrass Traits in Mediating Zostera noltei Vulnerability to Mesograzers. PLoS ONE 11:e0156848. https://doi.org/10.1371/journal.pone.0156848
  • Martins M, de los Santos CB, Masqué P, et al (2021) Carbon and Nitrogen Stocks and Burial Rates in Intertidal Vegetated Habitats of a Mesotidal Coastal Lagoon. Ecosystems. https://doi.org/10.1007/s10021-021-00660-6
  • Mateo MÁ, Díaz-Almela E, Piñeiro-Juncal N, et al (2018) Carbon stocks and fluxes associated to Andalusian seagrass meadows. LIFE Programme, Blanes
  • Neves JP, Simões MP, Ferreira LF, et al (2010) Comparison of Biomass and Nutrient Dynamics Between an Invasive and a Native Species in a Mediterranean Saltmarsh. Wetlands 30:817–826. https://doi.org/10.1007/s13157-010-0080-4
  • Oliveira VH, Marques B, Carvalhais A, et al (2025) Contaminant bioaccumulation and biochemical responses of the bivalve Scrobicularia plana and the polychaete Hediste diversicolor to ecosystem restoration measures using Zostera noltei. Environmental Research 275:121429. https://doi.org/10.1016/j.envres.2025.121429
  • Palomo L, Niell FX (2009) Primary production and nutrient budgets of Sarcocornia perennis ssp. alpini (Lag.) Castroviejo in the salt marsh of the Palmones River estuary (Southern Spain). Aquatic Botany 91:130–136. https://doi.org/10.1016/j.aquabot.2009.04.002
  • Pardal M, Marques J, Metelo I, et al (2000) Impact of eutrophication on the life cycle, population dynamics and production of Ampithoe valida (Amphipoda) along an estuarine spatial gradient (Mondego estuary, Portugal). Mar Ecol Prog Ser 196:207–219. https://doi.org/10.3354/meps196207
  • Parreira F, Martínez-Crego B, Lourenço Afonso CM, et al (2021) Biodiversity consequences of Caulerpa prolifera takeover of a coastal lagoon. Estuarine, Coastal and Shelf Science 255:1–7. https://doi.org/10.1016/j.ecss.2021.107344
  • Paul M, De Los Santos CB (2019) Variation in flexural, morphological, and biochemical leaf properties of eelgrass (Zostera marina) along the European Atlantic climate regions. Mar Biol 166:127. https://doi.org/10.1007/s00227-019-3577-2
  • Perez M, Duarte CM, Romero J, et al (1994) Growth plasticity in Cymodocea nodosa stands: the importance of nutrient supply. Aquatic Botany 47:249–264. https://doi.org/10.1016/0304-3770(94)90056-6
  • Reyes J, Sansón M (2001) Biomass and production of the epiphytes on the leaves of Cymodocea nodosa in the Canary Islands. Botanica Marina 44:307–313. https://doi.org/10.1515/BOT.2001.039
  • Román M, de los Santos CB, Román S, et al (2022) Loss of surficial sedimentary carbon stocks in seagrass meadows subjected to intensive clam harvesting. Marine Environmental Research 175:105570. https://doi.org/10.1016/j.marenvres.2022.105570
  • Román M, Fernández E, Méndez G (2019a) Anthropogenic nutrient inputs in the NW Iberian Peninsula estuaries determined by nitrogen and carbon isotopic signatures of Zostera noltei seagrass meadows. Marine Environmental Research 143:30–38. https://doi.org/10.1016/j.marenvres.2018.11.001
  • Román M, Fernández E, Zamborain-Mason J, Méndez G (2019b) Anthropogenic Impact on Zostera noltei Seagrass Meadows (NW Iberian Peninsula) Assessed by Carbon and Nitrogen Stable Isotopic Signatures. Estuaries and Coasts 42:987–1000. https://doi.org/10.1007/s12237-019-00549-7
  • Rueda JL, Salas C, Marina P (2008) Seasonal variation in a deep subtidal Zostera marina L. bed in southern Spain (western Mediterranean Sea). Botanica Marina 51:92–102. https://doi.org/10.1515/BOT.2008.016
  • Santos L, Cunha Ã, Silva H, et al (2007) Influence of salt marsh on bacterial activity in two estuaries with different hydrodynamic characteristics (Ria de Aveiro and Tagus Estuary): Influence of salt marsh on bacterial activity in estuaries. FEMS Microbiology Ecology 60:429–441. https://doi.org/10.1111/j.1574-6941.2007.00304.x
  • Santos R, Duque-Núñez N, de los Santos CB, et al (2019) Superficial sedimentary stocks and sources of carbon and nitrogen in coastal vegetated assemblages along a flow gradient. Scientific Reports 9:1–11. https://doi.org/10.1038/s41598-018-37031-6
  • Santos R, Ito P, de los Santos CB (2023) Avaliação dos ecossistemas de carbono azul em Portugal continental. Centro de Ciências do Mar, Faro
  • Simões MP, Calado ML, Madeira M, Gazarini LC (2011) Decomposition and nutrient release in halophytes of a Mediterranean salt marsh. Aquatic Botany 94:119–126. https://doi.org/10.1016/j.aquabot.2011.01.001
  • Sousa AI, Santos DB, Silva EFD, et al (2017) "Blue carbon" and nutrient stocks of salt marshes at a temperate coastal lagoon (Ria de Aveiro, Portugal). Scientific Reports 7:1–11. https://doi.org/10.1038/srep41225
  • Terrados J, Grau-Castella M, Piñol-Santiñà D, Riera-Fernández P (2006) Biomass and primary production of a 8-11 m depth meadow versus <3 m depth meadows of the seagrass Cymodocea nodosa (Ucria) Ascherson. Aquatic Botany 84:324–332. https://doi.org/10.1016/j.aquabot.2005.12.004
  • Terrados J, Ros JD (1992) Growth and primary production of Cymodocea nodosa (Ucria) Ascherson in a Mediterranean coastal lagoon: the Mar Menor (SE Spain). Aquatic Botany 43:63–74. https://doi.org/10.1016/0304-3770(92)90014-A
  • Martins, M., Parreira, F., de los Santos, C. B., Silva, J., & Santos, R. (2020). Avaliação de incidência ambiental relativo ao projeto "Requalificação da Frente Ribeirinha de Faro, Intervalos 3 e 4" (p. 32). Centro de Ciências do Mar.
  • de los Santos, C. B., Mace, R., Silva, J., & Santos, R. (2017). Avaliação do impacto das dragagens e deposição de sedimentos planeadas para a Barra da Fuzeta nos serviços ecossistémicos prestados pelas ervas marinhas. (p. 18). Centro de Ciências do Mar.
  • Lahuna, F. (2017). Sediment deposition in seagrass and salt marsh ecosystems: An approach to quantify ecosystem services in a coastal tidal lagoon [MSc Thesis]. Univertité Pierre et Marie Curie.
  • Martins, M., Parreira, F., de los Santos, C. B., Silva, J., & Santos, R. (2020). Avaliação de incidência ambiental relativo ao projeto "Requalificação da Frente Ribeirinha de Faro, Intervalos 3 e 4" (p. 32). Centro de Ciências do Mar.
  • Martins, M. (2017). Long term carbon storage in seagrass meadows and saltmarshes in the Ria Formosa along a hydrodynamic gradient. [MSc Thesis, Universidade do Algarve]. http://hdl.handle.net/10400.1/12222
  • Silva, J. (2004). The photosynthetic ecology of Zostera noltii [PhD thesis]. Universidade do Algarve.
  • Carlos M. Duarte, Núria Marbà, Antonio Tovar, Alfredo Barón, Fernando Orozco. Estudio de implementación de la Directiva Marco del Agua en las Illes Balears. Evaluación de la calidad ambiental de las masas de aguas costeras utilizando el elemento biológico de calidad: Posidonia oceanica. Periodo 2005-2006. Recursos Hídricos, Govern de les Illes Balears Agència Balear de l'Aigua i de la Qualitat Ambient.