Published April 10, 2024 | Version v3
Dataset Open

Bio-logger Ethogram Benchmark: A benchmark for computational analysis of animal behavior, using animal-borne tags

  • 1. Earth Species Project
  • 2. Universidad de León
  • 3. Centre national de la recherche scientifique Borea
  • 4. Georgia College & State University
  • 5. African Institute for Mathematical Sciences, Stellenbosch University
  • 6. Department of Conservation, New Zealand
  • 7. Osaka University
  • 8. University of Texas, El Paso
  • 9. University of Helsinki
  • 10. Tampere University
  • 11. Nagoya University
  • 12. University of California, Santa Cruz

Description

This repository contains the datasets and experiment results presented in our arxiv paper:

B. Hoffman, M. Cusimano, V. Baglione, D. Canestrari, D. Chevallier, D. DeSantis, L. Jeantet, M. Ladds, T. Maekawa, V. Mata-Silva, V. Moreno-González, A. Pagano, E. Trapote, O. Vainio, A. Vehkaoja, K. Yoda, K. Zacarian, A. Friedlaender, "A benchmark for computational analysis of animal behavior, using animal-borne tags," 2023.

Standardized code to implement, train, and evaluate models can be found at https://github.com/earthspecies/BEBE/

Please note the licenses in each dataset folder.

Zip folders beginning with "formatted": These are the datasets we used to run the experiments reported in the benchmark paper. 

Zip folders beginning with "raw": These are the unprocessed datasets used in BEBE. Code to process these raw datasets into the formatted ones used by BEBE can be found at https://github.com/earthspecies/BEBE-datasets/.

Zip folders beginning with "experiments": Results of the cross-validation experiments reported in the paper, as well as hyperparameter optimization. Confusion matrices for all experiments can also be found here. Note that dt, rf, and svm refer to the feature set from Nathan et al., 2012.

Results used in Fig. 4 of arxiv paper (deep neural networks vs. classical models)
{dataset}_ harnet_nogyr
{dataset}_CRNN
{dataset}_CNN
{dataset}_dt
{dataset}_rf
{dataset}_svm
{dataset}_wavelet_dt
{dataset}_wavelet_rf
{dataset}_wavelet_svm

Results used in Fig. 5D of arxiv paper (full data setting)
If dataset contains gyroscope (HAR, jeantet_turtles, vehkaoja_dogs):
{dataset}_harnet_nogyr
{dataset}_harnet_random_nogyr
{dataset}_harnet_unfrozen_nogyr
{dataset}_RNN_nogyr
{dataset}_CRNN_nogyr
{dataset}_rf_nogyr

Otherwise:
{dataset}_harnet_nogyr
{dataset}_harnet_unfrozen_nogyr
{dataset}_harnet_random_nogyr
{dataset}_RNN_nogyr
{dataset}_CRNN
{dataset}_rf

Results used in Fig. 5E of arxiv paper (reduced data setting)
If dataset contains gyroscope (HAR, jeantet_turtles, vehkaoja_dogs):
{dataset}_harnet_low_data_nogyr
{dataset}_harnet_random_low_data_nogyr
{dataset}_harnet_unfrozen_low_data_nogyr
{dataset}_RNN_low_data_nogyr
{dataset}_wavelet_RNN_low_data_nogyr
{dataset}_CRNN_low_data_nogyr
{dataset}_rf_low_data_nogyr

Otherwise:
{dataset}_harnet_low_data_nogyr
{dataset}_harnet_random_low_data_nogyr
{dataset}_harnet_unfrozen_low_data_nogyr
{dataset}_RNN_low_data_nogyr
{dataset}_wavelet_RNN_low_data_nogyr
{dataset}_CRNN_low_data
{dataset}_rf_low_data

CSV files: we also include summaries of the experimental results in experiments_summary.csv, experiments_by_fold_individual.csv, experiments_by_fold_behavior.csv. 

experiments_summary.csv - results averaged over individuals and behavior classes
dataset (str): name of dataset
experiment (str): name of model with experiment setting 
fig4 (bool): True if dataset+experiment was used in figure 4 of arxiv paper
fig5d (bool): True if dataset+experiment was used in figure 5d of arxiv paper
fig5e (bool): True if dataset+experiment was used in figure 5e of arxiv paper
f1_mean (float): mean of macro-averaged F1 score, averaged over individuals in test folds
f1_std (float): standard deviation of macro-averaged F1 score, computed over individuals in test folds
prec_mean, prec_std (float): analogous for precision
rec_mean, rec_std (float): analogous for recall

experiments_by_fold_individual.csv - results per individual in the test folds
dataset (str): name of dataset
experiment (str): name of model with experiment setting 
fig4 (bool): True if dataset+experiment was used in figure 4 of arxiv paper
fig5d (bool): True if dataset+experiment was used in figure 5d of arxiv paper
fig5e (bool): True if dataset+experiment was used in figure 5e of arxiv paper
fold (int): test fold index
individual (int): individuals are numbered zero-indexed, starting from fold 1
f1 (float): macro-averaged f1 score for this individual
precision (float): macro-averaged precision for this individual
recall (float): macro-averaged recall for this individual

experiments_by_fold_behavior.csv - results per behavior class, for each test fold
dataset (str): name of dataset
experiment (str): name of model with experiment setting 
fig4 (bool): True if dataset+experiment was used in figure 4 of arxiv paper
fig5d (bool): True if dataset+experiment was used in figure 5d of arxiv paper
fig5e (bool): True if dataset+experiment was used in figure 5e of arxiv paper
fold (int): test fold index
behavior_class (str): name of behavior class
f1 (float): f1 score for this behavior, averaged over individuals in the test fold
precision (float): precision for this behavior, averaged over individuals in the test fold
recall (float): recall for this behavior, averaged over individuals in the test fold
train_ground_truth_label_counts (int): number of timepoints labeled with this behavior class, in the training set

Files

experiments_baglione_crows.zip

Files (14.0 GB)

Name Size Download all
md5:9d5e3ec9221e98493398ac49c67bfae1
310.9 MB Preview Download
md5:f4b4d19db20cde07e72d4b5140aaa1ec
459.8 kB Preview Download
md5:ddc3ac5b61e23e60607442d33951bed1
244.2 kB Preview Download
md5:1fbe9b834658b7a3b58e91d0d2e0a281
246.1 MB Preview Download
md5:c175a57278ed59ad51b80f0f81237991
628.9 MB Preview Download
md5:31877e97cedadb76a78bf7c6043556ef
594.0 MB Preview Download
md5:607968d8f44fcc9067f46a1336075b23
695.9 MB Preview Download
md5:15edf8bdd982b68c7bb42c3c64993e92
498.9 MB Preview Download
md5:ecbf22d2af4a68ed63da6d13292fac27
259.2 MB Preview Download
md5:9d745b96853d57c2307f5c5ce05bc470
925.1 MB Preview Download
md5:8aeb7ae1328ff16d44210916817ffacd
28.8 kB Preview Download
md5:118b48af64b2b451d7ff07a00d0c0f1a
1.1 GB Preview Download
md5:03d71a2803675a48b5f6a354f0e0fe74
277.4 MB Preview Download
md5:e2c3df00e4c25caf0823cb876456e977
337.9 kB Preview Download
md5:4ff830f7b9451d3d1be04b670bbcfb0e
187.6 MB Preview Download
md5:b3a2018607776c404d99d01334928cba
43.9 MB Preview Download
md5:b227b581632784da107794770718ad6c
227.6 MB Preview Download
md5:64d7fb2b6ad2462c5cb68b1bc2437096
12.8 MB Preview Download
md5:ad4035e05cdba36427eee4ef147bdbc2
130.7 MB Preview Download
md5:092f8667140beed982e550ef3ccecec5
347.1 MB Preview Download
md5:39ec4444827c7c293b97a741ff0e6fbb
667.3 MB Preview Download
md5:38a773c1443589451eb0c1d402241fa0
373.3 MB Preview Download
md5:c84b94f387cefd69716533e0abcda4a0
821.1 kB Preview Download
md5:15feae9ecfa9154c6d729a4521947c36
4.1 GB Preview Download
md5:74e110a5f175352291d585186001e528
78.4 MB Preview Download
md5:c9511e6ce4628d552cefecbd9b181662
119.5 MB Preview Download
md5:36ec5b088e74d3c2ac7c306ed853575f
941.5 MB Preview Download
md5:7259cc1e232d6c07e1d5853f8dbffb98
250.8 MB Preview Download
md5:cd11d256fe7c0920366cbab67da4bfaf
508.3 MB Preview Download
md5:002d983a22aa017d23f2f4b342cf9d8e
468.4 MB Preview Download

Additional details

References

  • DeSantis DL, Mata-Silva V, Johnson JD and Wagler AE (2020) Integrative Framework for Long-Term Activity Monitoring of Small and Secretive Animals: Validation With a Cryptic Pitviper. Front. Ecol. Evol. 8:169. doi: 10.3389/fevo.2020.00169
  • Jorge-L. Reyes-Ortiz, Luca Oneto, Albert Sam‡, Xavier Parra, Davide Anguita. Transition-Aware Human Activity Recognition Using Smartphones. Neurocomputing. Springer 2015.
  • Jeantet L et al. 2020. Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology. R. Soc. Open Sci. 7: 200139. http://dx.doi.org/10.1098/rsos.200139
  • Ladds et al (2017). Super machine learning: Improving accuracy and reducing variance of behaviour classification from accelerometry
  • Korpela, J., Suzuki, H., Matsumoto, S., Mizutani, Y., Samejima, M., Maekawa, T., Nakai, J., & Yoda, K. (2020). Machine learning enables improved runtime and precision for bio-loggers on seabirds. Communications Biology, 3.
  • Antti Vehkaoja, Sanni Somppi, Heini Törnqvist, Anna Valldeoriola Cardó, Pekka Kumpulainen, Heli Väätäjä, Päivi Majaranta, Veikko Surakka, Miiamaaria V. Kujala, and Outi Vainio, Description of movement sensor dataset for dog behavior classification, Data in Brief 40 (2022), 107822.
  • Pagano, A. M., 2018, Metabolic Rate, Body Composition, Foraging Success, Behavior, and GPS Locations of Female Polar Bears (Ursus maritimus), Beaufort Sea, Spring, 2014-2016 and Resting Energetics of an Adult Female Polar Bear: U.S. Geological Survey data release, https://doi.org/10.5066/F7XW4H0P.
  • Friedlaender, A.S., Tyson, R.B., Stimpert, A.K., Read, A.J., & Nowacek, D.P. (2013). Extreme diel variation in the feeding behavior of humpback whales along the western Antarctic Peninsula during autumn. Marine Ecology Progress Series, 494, 281-289.