Bio-logger Ethogram Benchmark: A benchmark for computational analysis of animal behavior, using animal-borne tags
Creators
- Hoffman, Benjamin1
- Cusimano, Maddie1
- Baglione, Vittorio2
- Canestrari, Daniela2
- Chevallier, Damien3
- DeSantis, Dominic L.4
- Jeantet, Lorène5
- Ladds, Monique A.6
- Maekawa, Takuya7
- Mata-Silva, Vicente8
- Moreno-González, Víctor2
- Trapote, Eva2
- Vainio, Outi9
- Vehkaoja, Antti10
- Yoda, Ken11
- Zacarian, Katherine1
- Friedlaender, Ari12
- 1. Earth Species Project
- 2. Universidad de León
- 3. Centre national de la recherche scientifique Borea
- 4. Georgia College & State University
- 5. African Institute for Mathematical Sciences, Stellenbosch University
- 6. Department of Conservation, New Zealand
- 7. Osaka University
- 8. University of Texas, El Paso
- 9. University of Helsinki
- 10. Tampere University
- 11. Nagoya University
- 12. University of California, Santa Cruz
Description
This repository contains the datasets and experiment results presented in our arxiv paper:
B. Hoffman, M. Cusimano, V. Baglione, D. Canestrari, D. Chevallier, D. DeSantis, L. Jeantet, M. Ladds, T. Maekawa, V. Mata-Silva, V. Moreno-González, A. Pagano, E. Trapote, O. Vainio, A. Vehkaoja, K. Yoda, K. Zacarian, A. Friedlaender, "A benchmark for computational analysis of animal behavior, using animal-borne tags," 2023.
Standardized code to implement, train, and evaluate models can be found at https://github.com/earthspecies/BEBE/.
Please note the licenses in each dataset folder.
Zip folders beginning with "formatted": These are the datasets we used to run the experiments reported in the benchmark paper.
Zip folders beginning with "raw": These are the unprocessed datasets used in BEBE. Code to process these raw datasets into the formatted ones used by BEBE can be found at https://github.com/earthspecies/BEBE-datasets/.
Zip folders beginning with "experiments": Results of the cross-validation experiments reported in the paper, as well as hyperparameter optimization. Confusion matrices for all experiments can also be found here. Note that dt, rf, and svm refer to the feature set from Nathan et al., 2012.
Results used in Fig. 4 of arxiv paper (deep neural networks vs. classical models)
{dataset}_ harnet_nogyr
{dataset}_CRNN
{dataset}_CNN
{dataset}_dt
{dataset}_rf
{dataset}_svm
{dataset}_wavelet_dt
{dataset}_wavelet_rf
{dataset}_wavelet_svm
Results used in Fig. 5D of arxiv paper (full data setting)
If dataset contains gyroscope (HAR, jeantet_turtles, vehkaoja_dogs):
{dataset}_harnet_nogyr
{dataset}_harnet_random_nogyr
{dataset}_harnet_unfrozen_nogyr
{dataset}_RNN_nogyr
{dataset}_CRNN_nogyr
{dataset}_rf_nogyr
Otherwise:
{dataset}_harnet_nogyr
{dataset}_harnet_unfrozen_nogyr
{dataset}_harnet_random_nogyr
{dataset}_RNN_nogyr
{dataset}_CRNN
{dataset}_rf
Results used in Fig. 5E of arxiv paper (reduced data setting)
If dataset contains gyroscope (HAR, jeantet_turtles, vehkaoja_dogs):
{dataset}_harnet_low_data_nogyr
{dataset}_harnet_random_low_data_nogyr
{dataset}_harnet_unfrozen_low_data_nogyr
{dataset}_RNN_low_data_nogyr
{dataset}_wavelet_RNN_low_data_nogyr
{dataset}_CRNN_low_data_nogyr
{dataset}_rf_low_data_nogyr
Otherwise:
{dataset}_harnet_low_data_nogyr
{dataset}_harnet_random_low_data_nogyr
{dataset}_harnet_unfrozen_low_data_nogyr
{dataset}_RNN_low_data_nogyr
{dataset}_wavelet_RNN_low_data_nogyr
{dataset}_CRNN_low_data
{dataset}_rf_low_data
CSV files: we also include summaries of the experimental results in experiments_summary.csv, experiments_by_fold_individual.csv, experiments_by_fold_behavior.csv.
experiments_summary.csv - results averaged over individuals and behavior classes
dataset (str): name of dataset
experiment (str): name of model with experiment setting
fig4 (bool): True if dataset+experiment was used in figure 4 of arxiv paper
fig5d (bool): True if dataset+experiment was used in figure 5d of arxiv paper
fig5e (bool): True if dataset+experiment was used in figure 5e of arxiv paper
f1_mean (float): mean of macro-averaged F1 score, averaged over individuals in test folds
f1_std (float): standard deviation of macro-averaged F1 score, computed over individuals in test folds
prec_mean, prec_std (float): analogous for precision
rec_mean, rec_std (float): analogous for recall
experiments_by_fold_individual.csv - results per individual in the test folds
dataset (str): name of dataset
experiment (str): name of model with experiment setting
fig4 (bool): True if dataset+experiment was used in figure 4 of arxiv paper
fig5d (bool): True if dataset+experiment was used in figure 5d of arxiv paper
fig5e (bool): True if dataset+experiment was used in figure 5e of arxiv paper
fold (int): test fold index
individual (int): individuals are numbered zero-indexed, starting from fold 1
f1 (float): macro-averaged f1 score for this individual
precision (float): macro-averaged precision for this individual
recall (float): macro-averaged recall for this individual
experiments_by_fold_behavior.csv - results per behavior class, for each test fold
dataset (str): name of dataset
experiment (str): name of model with experiment setting
fig4 (bool): True if dataset+experiment was used in figure 4 of arxiv paper
fig5d (bool): True if dataset+experiment was used in figure 5d of arxiv paper
fig5e (bool): True if dataset+experiment was used in figure 5e of arxiv paper
fold (int): test fold index
behavior_class (str): name of behavior class
f1 (float): f1 score for this behavior, averaged over individuals in the test fold
precision (float): precision for this behavior, averaged over individuals in the test fold
recall (float): recall for this behavior, averaged over individuals in the test fold
train_ground_truth_label_counts (int): number of timepoints labeled with this behavior class, in the training set
Files
experiments_baglione_crows.zip
Files
(14.0 GB)
Name | Size | Download all |
---|---|---|
md5:9d5e3ec9221e98493398ac49c67bfae1
|
310.9 MB | Preview Download |
md5:f4b4d19db20cde07e72d4b5140aaa1ec
|
459.8 kB | Preview Download |
md5:ddc3ac5b61e23e60607442d33951bed1
|
244.2 kB | Preview Download |
md5:1fbe9b834658b7a3b58e91d0d2e0a281
|
246.1 MB | Preview Download |
md5:c175a57278ed59ad51b80f0f81237991
|
628.9 MB | Preview Download |
md5:31877e97cedadb76a78bf7c6043556ef
|
594.0 MB | Preview Download |
md5:607968d8f44fcc9067f46a1336075b23
|
695.9 MB | Preview Download |
md5:15edf8bdd982b68c7bb42c3c64993e92
|
498.9 MB | Preview Download |
md5:ecbf22d2af4a68ed63da6d13292fac27
|
259.2 MB | Preview Download |
md5:9d745b96853d57c2307f5c5ce05bc470
|
925.1 MB | Preview Download |
md5:8aeb7ae1328ff16d44210916817ffacd
|
28.8 kB | Preview Download |
md5:118b48af64b2b451d7ff07a00d0c0f1a
|
1.1 GB | Preview Download |
md5:03d71a2803675a48b5f6a354f0e0fe74
|
277.4 MB | Preview Download |
md5:e2c3df00e4c25caf0823cb876456e977
|
337.9 kB | Preview Download |
md5:4ff830f7b9451d3d1be04b670bbcfb0e
|
187.6 MB | Preview Download |
md5:b3a2018607776c404d99d01334928cba
|
43.9 MB | Preview Download |
md5:b227b581632784da107794770718ad6c
|
227.6 MB | Preview Download |
md5:64d7fb2b6ad2462c5cb68b1bc2437096
|
12.8 MB | Preview Download |
md5:ad4035e05cdba36427eee4ef147bdbc2
|
130.7 MB | Preview Download |
md5:092f8667140beed982e550ef3ccecec5
|
347.1 MB | Preview Download |
md5:39ec4444827c7c293b97a741ff0e6fbb
|
667.3 MB | Preview Download |
md5:38a773c1443589451eb0c1d402241fa0
|
373.3 MB | Preview Download |
md5:c84b94f387cefd69716533e0abcda4a0
|
821.1 kB | Preview Download |
md5:15feae9ecfa9154c6d729a4521947c36
|
4.1 GB | Preview Download |
md5:74e110a5f175352291d585186001e528
|
78.4 MB | Preview Download |
md5:c9511e6ce4628d552cefecbd9b181662
|
119.5 MB | Preview Download |
md5:36ec5b088e74d3c2ac7c306ed853575f
|
941.5 MB | Preview Download |
md5:7259cc1e232d6c07e1d5853f8dbffb98
|
250.8 MB | Preview Download |
md5:cd11d256fe7c0920366cbab67da4bfaf
|
508.3 MB | Preview Download |
md5:002d983a22aa017d23f2f4b342cf9d8e
|
468.4 MB | Preview Download |
Additional details
References
- DeSantis DL, Mata-Silva V, Johnson JD and Wagler AE (2020) Integrative Framework for Long-Term Activity Monitoring of Small and Secretive Animals: Validation With a Cryptic Pitviper. Front. Ecol. Evol. 8:169. doi: 10.3389/fevo.2020.00169
- Jorge-L. Reyes-Ortiz, Luca Oneto, Albert Sam‡, Xavier Parra, Davide Anguita. Transition-Aware Human Activity Recognition Using Smartphones. Neurocomputing. Springer 2015.
- Jeantet L et al. 2020. Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology. R. Soc. Open Sci. 7: 200139. http://dx.doi.org/10.1098/rsos.200139
- Ladds et al (2017). Super machine learning: Improving accuracy and reducing variance of behaviour classification from accelerometry
- Korpela, J., Suzuki, H., Matsumoto, S., Mizutani, Y., Samejima, M., Maekawa, T., Nakai, J., & Yoda, K. (2020). Machine learning enables improved runtime and precision for bio-loggers on seabirds. Communications Biology, 3.
- Antti Vehkaoja, Sanni Somppi, Heini Törnqvist, Anna Valldeoriola Cardó, Pekka Kumpulainen, Heli Väätäjä, Päivi Majaranta, Veikko Surakka, Miiamaaria V. Kujala, and Outi Vainio, Description of movement sensor dataset for dog behavior classification, Data in Brief 40 (2022), 107822.
- Pagano, A. M., 2018, Metabolic Rate, Body Composition, Foraging Success, Behavior, and GPS Locations of Female Polar Bears (Ursus maritimus), Beaufort Sea, Spring, 2014-2016 and Resting Energetics of an Adult Female Polar Bear: U.S. Geological Survey data release, https://doi.org/10.5066/F7XW4H0P.
- Friedlaender, A.S., Tyson, R.B., Stimpert, A.K., Read, A.J., & Nowacek, D.P. (2013). Extreme diel variation in the feeding behavior of humpback whales along the western Antarctic Peninsula during autumn. Marine Ecology Progress Series, 494, 281-289.