Published February 16, 2024 | Version v1
Dataset Open

Thermal tolerance in salmonids

Creators

Description

Salmonids are known to be a fish of high commercial value. The global salmon fish market was estimated to be worth USD 14.87 million in 2021 (Grand View Research, 2020). At the same time, their populations are particularly sensitive to climate change, as they need specific temperature ranges for optimal growth, reproduction and survival. Elevated temperatures of streams,  sea surface as well as ocean acidification alongside the fishing industry, puts enormous pressure on their populations (Crozier, et al. 2020).  This dataset synthesises the thermal tolerance values (CTmax - Critical Thermal Maximum) of various salmon species in a wide range of geographical locations, allowing us to compare and determine the most vulnerable species in response to the increasing temperatures. 

Technical info (English)

Literature Search Protocol: 

  • Literature search was conducted using a variety of literature search engines like: "Web of Science", "Science Direct", "Google Scholar", "Scopus", "Research Gate"
  • A list of salmon species with their accepted and scientific name was compiled prior to the literature search. 
  • Keywords and phrases like "thermal tolerance", "CTmax", "Critical thermal tolerance", and "Maximum thermal tolerance" were used during the search process, alongside the specific Latin names of the salmon species  

Technical info

Dataset consists of:

  • Species scientific name in Latin, for example  Oncorhynchus mykiss
  • Species accepted name, for example Rainbow Trout 
  • Location - where was the study conducted, where was the investigated salmon species derived from 
  • Year of study
  • CTmin - critical minimum temperature 
  • CTmax - critical maximum temperature      *n/a - information not available 
  • Units - degrees Celcius 
  • Methods - brief description of the way the data was collected 
  • Paper - the references to the studies used to obtain the data 

Files

Files (16.9 kB)

Name Size Download all
md5:2d896a022d4f4f6f3edc19fe5c599227
16.9 kB Download

Additional details

References

  • Molony, B., & Molony, B. (2001). Environmental requirements and tolerances of rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) with special reference to Western Australia: a review (Vol. 130). Perth, Australia: Department of Fisheries, Government of Western Australia.
  • PenneyChantelle, M., NashGordon, W., & Kurt, G. (2014). Cardiorespiratory responses of seawater-acclimated adult Arctic char (Salvelinus alpinus) and Atlantic salmon (Salmo salar) to an acute temperature increase. Canadian Journal of Fisheries and Aquatic Sciences, 71, 1096-1105. https://doi.org/10.1139/CJFAS-2013-0569.
  • Keefer, M., Clabough, T., Jepson, M., Naughton, G., Blubaugh, T., Joosten, D., & Caudill, C. (2015). Thermal exposure of adult Chinook salmon in the Willamette River basin.. Journal of thermal biology, 48, 11-20 . https://doi.org/10.1016/j.jtherbio.2014.12.002.
  • Thomas, R., Gharrett, J., Carls, M., Rice, S., Moles, A., & Korn, S. (1986). Effects of Fluctuating Temperature on Mortality, Stress, and Energy Reserves of Juvenile Coho Salmon. Transactions of The American Fisheries Society, 115, 52-59. https://doi.org/10.1577/1548-8659(1986)115<52:EOFTOM>2.0.CO;2.
  • Brett, J., & Glass, N. (1973). Metabolic Rates and Critical Swimming Speeds of Sockeye Salmon (Oncorhynchus nerka) in Relation to Size and Temperature. Wsq: Women's Studies Quarterly, 30, 379-387. https://doi.org/10.1139/F73-068.
  • Clark, T., Jeffries, K., Hinch, S., & Farrell, A. (2011). Exceptional aerobic scope and cardiovascular performance of pink salmon (Oncorhynchus gorbuscha) may underlie resilience in a warming climate. Journal of Experimental Biology, 214, 3074 - 3081. https://doi.org/10.1242/jeb.060517.
  • Abe, T., Kitagawa, T., Makiguchi, Y., & Sato, K. (2019). Chum salmon migrating upriver adjust to environmental temperatures through metabolic compensation. Journal of Experimental Biology, 222. https://doi.org/10.1242/jeb.186189.
  • Bevelhimer, M., Stein, R., & Carline, R. (1985). Assessing Significance of Physiological Differences among Three Esocids with a Bioenergetics Model. Canadian Journal of Fisheries and Aquatic Sciences, 42, 57-69. https://doi.org/10.1139/F85-008.
  • Elliott, J. (1975). Number of meals in a day, maximum weight of food consumed in a day and maximum rate of feeding for brown trout, Salmo trutta L.. Freshwater Biology, 5, 287-303. https://doi.org/10.1111/J.1365-2427.1975.TB00142.X.
  • Taniguchi, Y., Rahel, F., Novinger, D., & Gerow, K. (1998). Temperature mediation of competitive interactions among three fish species that replace each other along longitudinal stream gradients. Canadian Journal of Fisheries and Aquatic Sciences, 55, 1894-1901. https://doi.org/10.1139/F98-072.
  • Sellers, T., Parker, B., Schindler, D., & Tonn, W. (1998). Pelagic distribution of lake trout (Salvelinus namaycush) in small Canadian Shield lakes with respect to temperature, dissolved oxygen, and light. Canadian Journal of Fisheries and Aquatic Sciences, 55, 170-179. https://doi.org/10.1139/F97-232.
  • PenneyChantelle, M., NashGordon, W., & Kurt, G. (2014). Cardiorespiratory responses of seawater-acclimated adult Arctic char (Salvelinus alpinus) and Atlantic salmon (Salmo salar) to an acute temperature increase. Canadian Journal of Fisheries and Aquatic Sciences, 71, 1096-1105. https://doi.org/10.1139/CJFAS-2013-0569.
  • Takami, T., Kitano, F., & Nakano, S. (1997). High Water Temperature Influences on Foraging Responses and Thermal Deaths of Dolly Varden Salvelinus malma and White-spotted Charr S. leucomaenis in a Laboratory. Fisheries Science, 63, 6-8. https://doi.org/10.2331/FISHSCI.63.6.
  • Selong, J., McMahon, T., Zale, A., & Barrows, F. (2001). Effect of Temperature on Growth and Survival of Bull Trout, with Application of an Improved Method for Determining Thermal Tolerance in Fishes. Transactions of The American Fisheries Society, 130, 1026-1037. 2.0.CO;2" target="_blank">https://doi.org/10.1577/1548-8659(2001)130<1026:EOTOGA>2.0.CO;2.
  • Bear, E., McMahon, T., & Zale, A. (2007). Comparative Thermal Requirements of Westslope Cutthroat Trout and Rainbow Trout: Implications for Species Interactions and Development of Thermal Protection Standards. Transactions of The American Fisheries Society, 136, 1113-1121. https://doi.org/10.1577/T06-072.1.
  • Recsetar, M., Zeigler, M., Ward, D., Bonar, S., & Caldwell, C. (2012). Relationship between fish size and upper thermal tolerance. Transactions of The American Fisheries Society, 141, 1433-1438. https://doi.org/10.1080/00028487.2012.694830.
  • Verhille, C., English, K., Cocherell, D., Farrell, A., & Fangue, N. (2016). High thermal tolerance of a rainbow trout population near its southern range limit suggests local thermal adjustment. Conservation Physiology, 4. https://doi.org/10.1093/conphys/cow057.
  • Thurow, R., & King, J. (1994). Attributes of Yellowstone Cutthroat Trout Redds in a Tributary of the Snake River, Idaho. Transactions of The American Fisheries Society, 123, 37-50. 2.3.CO;2" target="_blank">https://doi.org/10.1577/1548-8659(1994)123<0037:AOYCTR>2.3.CO;2.
  • Arjamand, S. (2013). Reproductive Biology of an Endangered Coldwater Fish Golden Mahseer, Tor Putitora (Ham.) From Anji Mahseer Hatchery Reasi (J&K). IOSR Journal of Pharmacy, 03, 13-16. https://doi.org/10.9790/3013-0310013-16.
  • Lohr, S., Byorth, P., Kaya, C., & Dwyer, W. (1996). High-Temperature Tolerances of Fluvial Arctic Grayling and Comparisons with Summer River Temperatures of the Big Hole River, Montana. Transactions of The American Fisheries Society, 125, 933-939. 2.3.CO;2" target="_blank">https://doi.org/10.1577/1548-8659(1996)125<0933:HTTOFA>2.3.CO;2.
  • Lewis, S. (1980). Respiration of Lampreys. Canadian Journal of Fisheries and Aquatic Sciences, 37, 1711-1722. https://doi.org/10.1139/F80-217.
  • Jia, Z., Zhang, Y., Shi, L., Bai, Q., Jin, S., & Mou, Z. (2008). Amplification of rainbow trout microsatellites in Brachymystax lenok. Molecular Ecology Resources, 8. https://doi.org/10.1111/j.1755-0998.2008.02310.x.
  • Jiasheng, Y. (2007). Growth development and reproduction of reared Hucho taimen. Journal of fishery sciences of China.
  • Phuong, L., Huong, D., Nyengaard, J., & Bayley, M. (2017). Gill remodelling and growth rate of striped catfish Pangasianodon hypophthalmus under impacts of hypoxia and temperature.. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 203, 288-296 . https://doi.org/10.1016/j.cbpa.2016.10.006.
  • Lewis, S. (1980). Respiration of Lampreys. Canadian Journal of Fisheries and Aquatic Sciences, 37, 1711-1722. https://doi.org/10.1139/F80-217.
  • Lyytikäinen, T., Koskela, J., & Rissanen, I. (1997). Thermal resistance and upper lethal temperatures of underyearling Lake Inari Arctic charr. Journal of Fish Biology, 51, 515-525. https://doi.org/10.1111/J.1095-8649.1997.TB01509.X.
  • Edsall, T., & Rottiers, D. (1976). Temperature Tolerance of Young-of-the-Year Lake Whitefish, Coregonus clupeaformis. Wsq: Women's Studies Quarterly, 33, 177-180. https://doi.org/10.1139/F76-021.
  • Dash, P., Tandel, R., Pandey, N., Sawant, P., Sarma, D., Rawat, K., & Chadha, N. (2021). Effects of rearing temperature on egg incubation, growth, standard metabolic rate, and thermal tolerance of chocolate mahseer, Neolissochilus hexagonolepis.. Journal of thermal biology, 98, 102942 . https://doi.org/10.1016/J.JTHERBIO.2021.102942.
  • Grand View Research,.(2020). GVR Report coverSalmon Fish Market Size, Share & Trends Report Salmon Fish Market Size, Share & Trends Analysis Report By Species (Atlantic/Aquaculture, Pacific), By Form (Fresh, Frozen), By Region, And Segment Forecasts, 2022 - 2030., accessed 16/02/2024, via: https://www.grandviewresearch.com/industry-analysis/aquaculture-salmon-fish-market-report#
  • Crozier, L., McClure, M., Beechie, T., Bograd, S., Boughton, D., Carr, M., Cooney, T., Dunham, J., Greene, C., Haltuch, M., Hazen, E., Holzer, D., Huff, D., Johnson, R., Jordan, C., Kaplan, I., Lindley, S., Mantua, N., Moyle, P., Myers, J., Nelson, M., Spence, B., Weitkamp, L., Williams, T., & Willis-Norton, E. (2019). Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem. PLoS ONE, 14. https://doi.org/10.1371/journal.pone.0217711.