The Sun as a revolving-field magnetic alternator with a wobbling-core rotator from real data
Description
Rather than as a star classically assumed to feature elusive dynamo or a proverbial engine and impulsively alternating polarity, the Sun reveals itself in the 385.8–2.439-nHz (1-month–13-years) band of polar (φSun>|70°|) wind’s decadal dynamics, dominated by the fast (>700 km s−1) winds, as a globally completely vibrating revolving-field magnetic alternator at work at all times. Thus North–South separation of 1994–2008 Ulysses in situ <10nT polar-wind samplings reveals Gauss–Vaníček spectral signatures of an entirely ≥99%-significant, Sun-borne global incessant sharp Alfvén resonance (AR), Pi=PS/i, i=2…n, i∈ℤ ∧ n∈א, accompanied by a symmetrical sharp antiresonance P-. The ideal Sun (slow winds absent) AR imprints to the order u=136 into the fast winds nearly theoretically, with the northerly winds preferentially more so. The spectral peaks’ fidelity is very high (≫12) to high (>12) and reaches Φ>2∙103, validating the signatures as a global dynamical process. The fast-wind spectra reveal upward drifting low-frequency trends due to a rigid core and undertones due to a core offset away from the apex. While the consequent core wobble with a 2.2±0.1-yr return period is the AR trigger, the core offset causes northerly preferentiality of Sun magnetism. Multiple total (band-wide) spectral symmetries of solar activity represented by historical solar-cycle lengths and sunspot and calcium numbers expose the solar alternator and core wobble as the moderators of sunspots, nanoflares, and coronal mass ejections that resemble machinery sparking. The real Sun (slow winds inclusive) AR resolves to n=100+ and is governed by the PS=~11-yr Schwabe global damping (equilibrium) mode northside, its ~10-yr degeneration equatorially, and ~9-yr southside. The Sun is a typical ~3-dB-attenuated ring system, akin to rotating machinery with a wobbling rotator (core), featuring differentially revolving and contrarily (out-of-phase-) vibrating conveyor belts and layers, as well as a continuous global spectrum with patterns complete in both parities and the >81.3 nHz(S) and 55.6 nHz(N) resolution in lowermost frequencies (≲2 μHz in most modes). The global decadal vibration resonantly (quasi-periodically) flips the core, thus alternating the magnetic polarity of our host star. Unlike a resonating motor restrained from separating its casing, the cageless Sun lacks a stator and vibrates freely, resulting in all-spin and mass release (fast solar winds) in an axial shake-off beyond L1 at discrete wave modes generated highly coherently by the whole Sun. Thus, the northerly and southerly antiresonance tailing harmonic P-17 is the well-known PRg=154-day (or PS/3/3/3 to ±1‰) Rieger period from which the wind’s folded Rieger resonance (RR) sprouts, governing solar-system (including planetary) dynamics and space weather. AR and its causes were verified against remote data and the experiment, thus instantly replacing the dynamo with a magnetoalternator and advancing basic knowledge on the >100 billion trillions of solar-type stars. Shannon’s theory-based Gauss-Vanicek spectral analysis revolutionizes astrophysics and space science by rigorously simulating fleet formations from a single spacecraft and physics by computing nonlinear global dynamics directly (rendering spherical approximation obsolete).
Notes (English)
Files
320-Article-593-1-10-20231219-1.pdf
Files
(4.3 MB)
Name | Size | Download all |
---|---|---|
md5:718cd2f0a5be296bf6b3ef9a1a471cff
|
4.1 MB | Preview Download |
md5:521eb76bc10c7e58f345abfcde0d928f
|
218.4 kB | Preview Download |
Additional details
Additional titles
- Subtitle (English)
- Ulysses replaces dynamo with magnetic alternator in our Sun and Sun-like stars
Identifiers
- URL
- https://n2t.net/ark:/88439/x080008
- ARK
- ark:/88439/x080008
- DOI
- 10.5281/zenodo.10426185
- arXiv
- arXiv:2301.07219
Related works
- Is new version of
- Preprint: arXiv:2301.07219 (arXiv)
- Is published in
- Journal article: https://n2t.net/ark:/88439/x080008 (URL)
References
- Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F. (2012) Is there a planetary influence on solar activity? Astron. Astroph. 548:A88. https://doi.org/10.1051/0004-6361/201219997
- Alfvén, H. (1943) On Sunspots and the Solar Cycle. Arkiv f. Mat., Astron. o. Fys. 29A(12):1–17. https://ui.adsabs.harvard.edu/abs/1943ArMAF..29R...1A
- Alfvén, H. (1942) Existence of electromagnetic-hydrodynamic waves. Nature 150(3805):405–406. https://doi.org/10.1038%2F150405d0
- Alfvén, H. (1948) Cosmical electrodynamics. Oxford University Press (2nd ed. Clarendon Press, 1963), 228 pp. ISBN 9780198512011
- Asplund, M., Grevesse, N., Sauval, A.J., Scott, P. (2009) The chemical composition of the Sun. Ann. Rev. Astron. Astrophys. 47(1):481–522. https://doi.org/10.1146/annurev.astro.46.060407.145222
- Bai T. and Cliver E. W. (1990) A 154 day periodicity in the occurrence rate of proton flares. Astrophys. J. 363:299–309. https://doi.org/10.1086/169342
- Balogh, A. (1988) The Ulysses magnetometer. In: IEEE Colloquium on Satellite Instrumentation, 20 January, London, United Kingdom. Institution of Engineering and Technology. https://ieeexplore.ieee.org/xpl/conhome/2179/proceeding
- Bellan, P.M. (1996) Mode conversion into non-MHD waves at the Alfvén layer: The case against the field line resonance concept. J. Geophys. Res. 101(A11):24887–24898. https://doi.org/10.1029/96JA02253
- Bellan, P.M. (1994) Alfvén 'resonance' reconsidered: Exact equations for wave propagation across a cold inhomogeneous plasma. Phys. Plasmas 1:3523–3541. https://doi.org/10.1063/1.870888
- Bergemann M., Serenelli A. (2014) Solar Abundance Problem. In: Niemczura E., Smalley B., Pych W. (Eds.) Determination of Atmospheric Parameters of B-, A-, F- and G-Type Stars. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-06956-2_21
- Borovsky, J.E. (2018) The spatial structure of the oncoming solar wind at Earth and the shortcomings of a solar-wind monitor at L1. J. Atmo. Solar-Terr. Phys. 177:2-11. https://doi.org/10.1016/j.jastp.2017.03.014
- Bose, S., Nagaraju, K. (2018) On the variability of the Solar Mean Magnetic Field: contributions from various magnetic features on the surface of the Sun. Astrophys. J. 862:35. https://doi.org/10.3847/1538-4357/aaccf1
- Brooks, D., Ugarte-Urra, I., Warren, H. (2015) Full-Sun observations for identifying the source of the slow solar wind. Nat. Commun. 6:5947. https://doi.org/10.1038/ncomms6947
- Bruno, R., Carbone, V. (2013) The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 10:2. https://doi.org/10.12942/lrsp-2013-2
- Campos, L. (1977) On the generation and radiation of magneto-acoustic waves. J. Fluid Mech. 81(3):529–549. https://doi.org/10.1017/S0022112077002213
- Cane, H.V., Richardson, I.G., von Rosenvinge, T.T. (1998) Interplanetary magnetic field periodicity of ∼153 days. Geophys. Res. Lett. 25(24):4437–4440. https://doi.org/10.1029/1998GL900208
- Carbonell, M., Oliver, R., Ballester, J.L. (1992) Power spectra of gapped time series: a comparison of several methods. Astron. & Astrophys. 264:350–360. https://ui.adsabs.harvard.edu/#abs/1992A&A...264..350C
- Choi, K.-E., Lee, D.-Y. (2019) Origin of solar rotational periodicity and harmonics identified in the Interplanetary Magnetic Field Bz component near the Earth during solar cycles 23 and 24. Sol. Phys. 294:44. https://doi.org/10.1007/s11207-019-1433-7
- Cole, M.O.T (2008) On stability of rotordynamic systems with rotor–stator contact interaction. Proc. R. Soc. A. 4643353–3375. https://doi.org/10.1098/rspa.2008.0237
- Craymer, M.R. (1998) The Least Squares Spectrum, Its Inverse Transform and Autocorrelation Function: Theory and Some Applications in Geodesy. Ph.D. Dissertation, University of Toronto, Canada. https://hdl.handle.net/1807/12263
- Danilović, S., Vince, I., Vitas, N., Jovanović, P. (2005) Time series analysis of long term full disk observations of the Mn I 539.4 nm solar line. Serb. Astron. J. 170:79–88. https://doi.org/10.2298/SAJ0570079D
- Davila, J.M. (1987) Heating of the solar corona by the resonant absorption of Alfven waves. Astrophys. J. 317:514–521. https://ui.adsabs.harvard.edu/#abs/1987ApJ...317..514D
- Den Hartog, J.P. (1985) Mechanical Vibrations. Dover Publications, New York, United States. ISBN 0486647854
- Deng, L.H. Li, B., Xiang, Y.Y., Dun, G.T. (2014) On mid-term periodicities of high-latitude solar activity. Adv. Space Res. 54(1):125–131. https://doi.org/10.1016/j.asr.2014.03.006
- Deubner, F.-L., Gough, D. (1984) Helioseismology: Oscillations as a Diagnostic of the Solar Interior. Ann. Rev. Astron. Astrophys. 22(1):593–619. https://doi.org/10.1146/annurev.aa.22.090184.003113
- Dimitropoulou, M., Moussas, X., Strintzi, D. (2008) Enhanced Rieger type periodicities' detection in X-ray solar flares and statistical validation of Rossby waves' existence. Proc. Int. Astron. Union 4(S257):159–163. https://doi.org/10.1017/S1743921309029226
- Dzhalilov, N.S., Staude, J., Oraevsky, V.N. (2002) Eigenoscillations of the differentially rotating Sun - I. 22-year, 4000-year, and quasi-biennial modes. Astron. Astrophys. 384(1):282–298. https://doi.org/10.1051/0004-6361:20011836
- Ewins, D.J. (1995) Modal Testing: Theory and Practice. Research Studies Press Ltd., Taunton, England, ISBN 0863800173. John Wiley & Sons lnc., ISBN 04719904724. 313 pp.
- Forgacs-Dajka, E., Borkovits, T. (2007) Searching for mid-term variations in different aspects of solar activity – looking for probable common origins and studying temporal variations of magnetic polarities. Mon. Not. R. Astron. Soc. 374:282–291. https://doi.org/doi:10.1111/j.1365-2966.2006.11167.x
- Fossat, E., Boumier, P., Corbard, T., Provost, J., Salabert, D., Schmider, F.X., Gabriel, A.H., Grec, G., Renaud, C., Robillot, J.M., Roca-Cortés, T., Turck-Chièze, S., Ulrich, R.K., Lazrek, M. (2017) Asymptotic g modes: Evidence for a rapid rotation of the solar core. Astron. Astrophys. 604:A40. https://doi.org/10.1051/0004-6361/201730460
- Goedbloed, J.P., Lifschitz, A. (1995) Comment on "Alfvén 'resonance' reconsidered: Exact equations for wave propagation across a cold inhomogeneous plasma" [Phys. Plasmas 1:3523 (1994)]. Phys. Plasmas 2:3550–3551. https://doi.org/10.1063/1.871471
- Gough, D. (1995) Waves in the wind. Nature 376:120–121. https://doi.org/10.1038/376120a0
- Grail, R., Coles, W., Klinglesmith, M., Breen, A.R., Williams, P.J.S., Markkanen, J., Esser, R. (1996) Rapid acceleration of the polar solar wind. Nature 379:429–432. https://doi.org/10.1038/379429a0
- Grant, S.D.T., Jess, D.B., Zaqarashvili, T.V. Beck, C., Socas-Navarro, H., Aschwanden, M.J., Keys, P.H., Christian, D.J., Houston, S.J., Hewitt, R.L. (2018) Alfvén wave dissipation in the solar chromosphere. Nature Phys. 14:480–483. https://doi.org/10.1038/s41567-018-0058-3
- Grote, E., Busse, F.H. (2000) Hemispherical dynamos generated by convection in rotating spherical shells. Phys. Rev. E 62:4457–4460. https://doi.org/10.1103/PhyARevE.62.4457
- Gurgenashvili, E., Zaqarashvili, T.V., Kukhianidze, V., Oliver, R., Ballester, J.L., Dikpati, M., McIntosh, S.W. (2017) North–South Asymmetry in Rieger-type Periodicity during Solar Cycles 19–23. Astrophys. J. 845(2):137–148. https://dx.doi.org/10.3847/1538-4357/aa830a
- Gurgenashvili, E., Zaqarashvili, T.V., Kukhianidze, V., Oliver, R., Ballester, J.L., Ramishvili, G., Shergelashvili, B., Hanslmeier, A., Poedts, S. (2016) Rieger-type periodicity during solar cycles 14–24: estimation of dynamo magnetic field strength in the solar interior. Astrophys. J. 826(1):55. https://doi.org/10.3847/0004-637X/826/1/55
- He, J., Fu, Z.-F. (2001) Modal Analysis. Butterworth-Heinemann. ISBN 9780750650793. https://doi.org/10.1016/B978-0-7506-5079-3.X5000-1
- Jones, G., Balogh, A. (2003) The global heliospheric magnetic field polarity distribution as seen at Ulysses. Annales Geophysicae 21(6):1377–1382. https://doi.org/10.5194/angeo-21-1377-2003
- Kasper, J.C., Maruca, B.A., Stevens, M.L., Zaslavsky, A. (2013) Sensitive Test for Ion-Cyclotron Resonant Heating in the Solar Wind. Phys. Rev. Lett. 110:091102. https://doi.org/10.1103/PhysRevLett.110.091102
- Kinkhabwala, A. (2013) Maximum Fidelity. Max Planck Institute of Molecular Physiology report. https://arxiv.org/abs/1301.5186
- Knaack, R., Stenflo, J.O. (2005) Spherical harmonic decomposition of solar magnetic fields. Astron. Astrophys. 438(1):349–363. https://doi.org/10.1051/0004-6361:20052765
- Kurochkin, N.E. (1998) Transient periodicity in solar activity. Astron. Astrophys. Trans. 15(1–4):277–279. https://doi.org/10.1080/10556799808201781
- Li, H., Wang, C., Richardson, J.D. (2008) Properties of the termination shock observed by Voyager 2. Geophys. Res. Lett. 35:L19107. https://doi.org/10.1029/2008GL034869
- Markovskii, S.A., Vasquez, B.J., Hollweg, J.V. (2009) Proton heating by nonlinear field-aligned Alfvén waves in solar coronal holes. Astrophys. J. 695(2):1413. https://doi.org/10.1088/0004-637X/695/2/1413
- Mattsson, L., Wahlin, R., Höfner, S. (2010) Dust driven mass loss from carbon stars as a function of stellar parameters - I. A grid of solar-metallicity wind models. Astron. Astrophys. 509:A14. https://doi.org/10.1051/0004-6361/200912084
- McLeod, A.F., Dale, J.E., Evans, C.J., Ginsburg, A., Kruijssen, J.M.D., Pellegrini, E.W., Ramsay, S.K., Testi, L. (2019) Feedback from massive stars at low metallicities: MUSE observations of N44 and N180 in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 486:5263–5288. https://doi.org/10.1093/mnras/sty2696
- Omerbashich, M. (2023a) Earth as a time crystal: macroscopic nature of a quantum-scale phenomenon exposes quantum physics as tidally-resonantly localized to host star. arXiv:2301.02578, Subject: Geophysics (physics.geo-ph); Quantum Physics (quant-ph). https://doi.org/10.48550/arXiv.2301.02578
- Omerbashich, M. (2023b) Global coupling mechanism of Sun resonant forcing of Mars, Moon, and Earth seismicity. J. Geoph. 65(1):1–46. https://n2t.net/ark:/88439/x040901 (preprint: arXiv:2301.10800, Subject: Earth and Planetary Astrophysics (astro-ph.EP). https://doi.org/10.48550/arXiv.2301.10800) (press release: https://www.openpr.com/news/2982920/scientists-now-know-that-and-how-the-sun-paces-strong-quakes)
- Omerbashich, M. (2022) Non-marine tetrapod extinctions solve extinction periodicity mystery. Hist. Biol. 34(1):188-191. https://doi.org/10.1080/08912963.2021.1907367
- Omerbashich, M. (2007) Magnification of mantle resonance as a cause of tectonics. Geodinamica Acta 20:6:369–383. https://doi.org/10.3166/ga.20.369-383
- Omerbashich, M. (2006) Gauss–Vaníček Spectral Analysis of the Sepkoski Compendium: No New Life Cycles. Comp. Sci. Eng. 8(4):26–30. https://doi.org/10.1109/MCSE.2006.68 (Omerbashich, M. (2007) Erratum due to journal error. Comp. Sci. Eng. 9(4):5–6. DOI: https://doi.org/10.1109/MCSE.2007.79; https://arxiv.org/abs/math-ph/0608014))
- Omerbashich, M. (2003) Earth-model Discrimination Method. Ph.D. Dissertation, pp.129. Department of Geodesy, University of New Brunswick, Canada. ProQuest, USA. https://doi.org/10.6084/m9.figshare.12847304
- Pagiatakis, S. (1999) Stochastic significance of peaks in the least-squares spectrum. J. Geod. 73:67–78. https://doi.org/10.1007/s001900050220
- Pap, J., Tobiska, W.K., Bouwer, S.D. (1990) Periodicities of solar irradiance and solar activity indices, I. Sol. Phys. 129:165–189. https://doi.org/10.1007/BF00154372
- Papaloizou, J., Pringle, J.E. (1978) Non-radial oscillations of rotating stars and their relevance to the short-period oscillations of cataclysmic variables. Mon. Not. R. Astron. Soc. 182:423–442. https://doi.org/10.1093/mnras/182.3.423
- Parker, E.N. (1988) Nanoflares and the solar X-ray corona. Astrophys. J. 330:474–479. https://ui.adsabs.harvard.edu/abs/1988ApJ...330..474P
- de Pontieu B., McIntosh S.W., Carlsson M., Hansteen V.H., Tarbell T.D., et al. (2007) Chromospheric Alfvénic Waves Strong Enough to Power the Solar Wind. Science 318:1574-1577. https://doi.org/10.1126/science.1151747
- Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (2007) Numerical Recipes: The Art of Scientific Computing (3rd Ed.). Cambridge University Press, United Kingdom. ISBN 9780521880688
- Rieger, E., Share, G.H., Forrest, D.J., Kanbach, G., Reppin, C., Chupp, E.L. (1984) A 154-day periodicity in the occurrence of hard solar flares? Nature 312:623–625. https://doi.org/10.1038/312623a0
- Robson J.D., Dodds C.J., Macvean D.B., Paling, V.R. (1971) Vibration Theory I: Receptance. In: Random Vibrations. International Centre for Mechanical Sciences (Courses and Lectures), Vol. 115. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2734-6_4
- Route, M. (2016) The discovery of solar-like activity cycles beyond the end of the main sequence? Astrophys. J. Lett. 830:L27. https://doi.org/10.3847/2041-8205/830/2/L27
- Scherrer, P.H., Wilcox, J.M., Svalgaard, L., Duvall, Jr. T.L., Dittmer, P.H., Gustafson, E.K. (1977) The mean magnetic field of the Sun: Observations at Stanford. Sol. Phys. 54:353–361. https://doi.org/10.1007/BF00159925
- Schwabe, H. (1844) Solar observations during 1843. Astronomische Nachrichten 20(495):233–236. https://ui.adsabs.harvard.edu/abs/1844AN.....21..233S
- Shannon, C.E. (1948) A Mathematical Theory of Communication. Bell System Tech. J. 27:379–423, 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- Singh, Y.P., Badruddin (2019) Study of the solar rotational period and its harmonics in solar activity, interplanetary, geomagnetic, and cosmic ray intensity indicators during solar polarity reversal periods. Sol. Phys. 294:27. https://doi.org/10.1007/s11207-019-1413-y
- Smith, E.J., Marsden, R.G. (2003) Ulysses observations at solar maximum: introduction. Geophys. Res. Lett. 30:8027. https://doi.org/10.1029/2003GL018223
- Solanki, S.K., Inhester, B., Schussler, M. (2006) The solar magnetic field. Rep. Prog. Phys. 69(3):563–668. https://doi.org/10.1088/0034-4885/69/3/R02
- Soler, R., Terradas, J., Oliver, R., Ballester, J.L. (2021) Resonances in a coronal loop driven by torsional Alfvén waves propagating from the photosphere. Astrophys. J. 909(2):190. https://doi.org/10.3847/1538-4357/abdec5
- Sorriso-Valvo, L., Marino, R., Carbone, V., Noullez, A., Lepreti, F., Veltri, P., Bruno, R., Bavassano, B., Pietropaolo, E. (2007) Observation of Inertial Energy Cascade in Interplanetary Space Plasma. Phys. Rev. Lett. 99(11):115001. https://doi.org/10.1103/PhysRevLett.99.115001
- Steeves, R.R. (1981). A statistical test for significance of peaks in the least squares spectrum. Collected Papers, Geodetic Survey, Department of Energy, Mines and Resources. Surveys and Mapping Branch, Ottawa Canada, pp. 149–166.
- Stenflo, J., Vogel, M. (1986) Global resonances in the evolution of solar magnetic fields. Nature 319:285–290. https://doi.org/10.1038/319285a0
- Srivastava, A., Shetye, J., Murawski, K., Doyle, J.G., Stangalini, M., Scullion, E., Ray, T., Wojcik, D.P., Dwivedi, B.N. (2017) High-frequency torsional Alfvén waves as an energy source for coronal heating. Sci. Rep. 7:43147. https://doi.org/10.1038/srep43147
- Taylor, J., Hamilton, S. (1972) Some tests of the Vaníček Method of spectral analysis. Astrophys. Space Sci. 17:357–367. https://doi.org/10.1007/BF00642907
- Thomas, S.R., Owens, M.J., Lockwood, M. (2014) The 22-year Hale Cycle in cosmic ray flux: evidence for direct heliospheric modulation. Sol. Phys. 289(1):407–421. https://doi.org/10.1007/s11207-013-0341-5
- Thomson, D., Maclennan, C., Lanzerotti, L. (1995) Propagation of solar oscillations through the interplanetary medium. Nature 376:139–144. https://doi.org/10.1038/376139a0
- Tokumaru, M., Fujiki, K., Iju, T. (2015) North-south asymmetry in global distribution of the solar wind speed during 1985–2013. J. Geophys. Res. Space Phys. 120:3283–3296. https://doi.org/10.1002/2014JA020765
- Vaníček, P. (1969) Approximate spectral analysis by least-squares fit. Astrophys. Space Sci. 4(4):387–391. https://doi.org/10.1007/BF00651344
- Vaníček, P. (1971) Further development and properties of the spectral analysis by least-squares fit. Astrophys. Space Sci. 12(1):10–33. https://doi.org/10.1007/BF00656134
- Vecchio, A., Carbone, V. (2009) Spatio-temporal analysis of solar activity: main periodicities and period length variations. Astron. Astrophys. 502(3):981–987. https://doi.org/10.1051/0004-6361/200811024
- Verscharen, D., Klein, K.G., Maruca, B.A. (2019) The multi-scale nature of the solar wind. Living Rev. Sol. Phys. 16:5, pp.136. https://doi.org/10.1007/s41116-019-0021-0
- Wells, D.E., Vaníček, P., Pagiatakis, S. (1985) Least squares spectral analysis revisited. Department of Geodesy & Geomatics Engineering Technical Report 84, University of New Brunswick, Canada. http://www2.unb.ca/gge/Pubs/TR84.pdf
- Withbroe, G.L., Noyes, R.W. (1977) Mass and Energy Flow in the Solar Chromosphere and Corona. Ann. Rev. Astron. Astrophys. 15(1):363–387. https://doi.org/10.1146/annurev.aa.15.090177.002051
- Wolff, C.L., Blizard, J.B. (1986) Properties of r-modes in the Sun. Sol. Phys. 105:1–15. https://doi.org/10.1007/BF00156371
- Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L. (2010) Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities. Astrophys. J. 709(2):749–758. https://doi.org/10.1088/0004-637X/709/2/749
- Zhou, W.-X., Sornette, D. (2001) Statistical significance of periodicity and log-periodicity with heavy-tailed correlat-ed noise. Int. J. Modern Phys. C 13(2):137–169. https://doi.org/10.1142%2FS0129183102003024
- An, Y., Ding, H., Chen, Z. et al. (2023) Inner core static tilt inferred from intradecadal oscillation in the Earth's rotation. Nat. Commun. 14:8130. https://doi.org/10.1038/s41467-023-43894-9
- Brown, B. (2011) Dynamos in Stellar Convection Zones: of Wreaths and Cycles. J. Phys.: Conf. Ser. 271:012064. https://doi.org/10.1088/1742-6596/271/1/012064
- Crossley, D.J., Rochester, M.G. (1980) Simple core undertones. Geophys. J. Int. 60(2):129–161. https://doi.org/10.1111/j.1365-246X.1980.tb04287.x
- Czech, M.J., Thomas, R.H. (2013) Open Rotor Aeroacoustic Installation Effects for Conventional and Unconventional Airframes. 19th AIAA/CEAS Aeroacoustics Conference, Berlin Germany, 27-29 May. American Institute of Aeronautics and Astronautics. https://ntrs.nasa.gov/citations/20130013993
- Hagedorn, P., Eckstein, M., Heffel, E., and Wagner, A. (2014) Self-Excited Vibrations and Damping in Circulatory Systems. ASME. J. Appl. Mech. 81(10):101009. https://doi.org/10.1115/1.4028240
- Hellevik, K., Gudmestad, O.T. (2017) Limit cycle oscillations at resonances. IOP Conf. Ser.: Mater. Sci. Eng. 276:012020. https://doi.org/10.1088/1757-899X/276/1/012020
- Kim, C.-H., Ih, J.-G. (2007) On the horizontal wobbling of an object levitated by near-field acoustic levitation. Ultrasonics 46(4):331-335. https://doi.org/10.1016/j.ultras.2007.05.001
- Miller, J.A., Ramaty, R. (1989) Relativistic Electron Transport and Bremsstrahlung Production in Solar Flares. Astrophys. J. 344:973. https://doi.org/10.1086/167865
- Omerbashich, M. (2023c). Jovian pulsars — a new class of pulsars from a magnetar- & dwarf novae-type prebursting evolution of Jupiter's global decadal magnetoactivity since 1996. Zenodo. https://doi.org/10.5281/zenodo.8231607
- Ramesh, K.B. (2010) Coronal mass ejections and sunspot-solar cycle perspective. Astrophys. J. Lett. 712(1). https://doi.org/10.1088/2041-8205/712/1/L77
- Rieger, E. (1989) Solar Flares — High-Energy Radiation and Particles. Sol. Phys. 121(1-2):323-345. https://ui.adsabs.harvard.edu/abs/1989SoPh..121..323R
- Triana, S.A., Dumberry, M., Cébron, D. et al. (2022) Core eigenmodes and their impact on the Earth's Rotation. Surv. Geophys. 43:107–148. https://doi.org/10.1007/s10712-021-09668-y
- Zhang, H., Huang, L., Li, X., Jiang, L., Yang, D., Zhang, F., Miao, J. (2020) Spectrum Analysis of a Coaxial Dual-Rotor System with Coupling Misalignment. Shock and Vibration 2020:5856341. https://doi.org/10.1155/2020/5856341
Subjects
- Sun
- http://astrothesaurus.org/uat/1693
- Solar dynamo
- http://astrothesaurus.org/uat/2001
- Active sun
- http://astrothesaurus.org/uat/18
- Solar oscillations
- http://astrothesaurus.org/uat/1515
- Solar physics
- http://astrothesaurus.org/uat/1476
- Heliosphere
- http://astrothesaurus.org/uat/711
- Solar wind
- http://astrothesaurus.org/uat/1534
- Fast solar wind
- http://astrothesaurus.org/uat/1872
- Slow solar wind
- http://astrothesaurus.org/uat/1873
- Alfven waves
- http://astrothesaurus.org/uat/23
- Time series analysis
- http://astrothesaurus.org/uat/1916
- Period search
- http://astrothesaurus.org/uat/1955
- Gauss-Vaniček spectral analysis
- http://astrothesaurus.org/uat/1959
- Astrophysical processes
- http://astrothesaurus.org/uat/104
- Magnetic fields
- http://astrothesaurus.org/uat/102
- Space weather
- http://astrothesaurus.org/uat/2037
- Interplanetary medium
- http://astrothesaurus.org/uat/825
- Gravitational interaction
- http://astrothesaurus.org/uat/1110
- Solar-terrestrial interactions
- http://astrothesaurus.org/uat/1473
- Solar analogs
- http://astrothesaurus.org/uat/1941
- Fundamental parameters of stars
- http://astrothesaurus.org/uat/555
- Stellar convective zones
- http://astrothesaurus.org/uat/301
- Stellar coronae
- http://astrothesaurus.org/uat/305
- Stellar winds
- http://astrothesaurus.org/uat/1636
- Stellar oscillations
- http://astrothesaurus.org/uat/1617
- Stellar physics
- http://astrothesaurus.org/uat/1621
- Stellar activity
- http://astrothesaurus.org/uat/1580
- Stellar properties
- http://astrothesaurus.org/uat/1624
- Stellar astronomy
- http://astrothesaurus.org/uat/1583
- Stellar magnetic fields
- http://astrothesaurus.org/uat/1610