Published November 28, 2023 | Version v6
Software Open

MEDIGAN MODEL UPLOAD: 00023_PIX2PIXHD_BREAST_DCEMRI

  • 1. Universitat de Barcelona

Description

Model ID:

00023_PIX2PIXHD_BREAST_DCEMRI.

 

Uploaded via:

API

 

Tags:

['dce-mri', 'postcontrast', 'synthesis', 'breast', 'mri', 'treatment', 'i2i', 'pix2pixHD', 'SPIE']

 

Usage:

This GAN is used as part of the medigan library. This GANs metadata is therefore stored in and retrieved from medigan's config filemedigan is an open-source Python library on Github that allows developers and researchers to easily add synthetic imaging data into their model training pipelines. medigan is documented here and can be used via pip install:

pip install medigan

To run this model in medigan, use the following commands.

  from medigan import Generators    generators = Generators()   generators.generate(model_id='00023_PIX2PIXHD_BREAST_DCEMRI',num_samples=10)

 

Description from model config:

: {"title": "Pre- to Post-Contrast Breast MRI Synthesis for Enhanced Tumour Segmentation", "provided_date": "11.2023", "trained_date": "2023", "provided_after_epoch": 30, "version": "1.0", "publication": "https://doi.org/10.48550/arXiv.2311.10879", "doi": ["https://doi.org/10.48550/arXiv.2311.10879"], "inputs": ["pre-contrast t1-weighted breast mri"], "comment": "2d breast mri slice by slice generation of postcontrast data"}

 

Files

00023.zip

Files (690.7 MB)

Name Size Download all
md5:bac99df39c5938d50828e5e7d0e47b57
690.7 MB Preview Download

Additional details

Identifiers

Related works

Describes
Conference paper: arXiv:2311.10879 (arXiv)