Published March 1, 2014 | Version v1
Journal article Open

In defense of P values


Statistical hypothesis testing has been widely criticized by ecologists in recent years. I review some of the more persistent criticisms of P values and argue that most stem from misunderstandings or incorrect interpretations, rather than from intrinsic shortcomings of the P value. I show that P values are intimately linked to confidence intervals and to differences in Akaike's information criterion (DAIC), two metrics that have been advocated as replacements for the P value. The choice of a threshold value of DAIC that breaks ties among competing models is as arbitrary as the choice of the probability of a Type I error in hypothesis testing, and several other criticisms of the P value apply equally to DAIC. Since P values, confidence intervals, and DAIC are based on the same statistical information, all have their places in modern statistical practice. The choice of which to use should be stylistic, dictated by details of the application rather than by dogmatic, a priori considerations.



Files (239.9 kB)

Name Size Download all
239.9 kB Preview Download