Published June 8, 2023 | Version 0.3.1
Software Open

tehtuner: An R package to fit and tune models for the conditional average treatment effect

  • 1. University of Minnesota Division of Biostatistics, USA

Description

Implements methods to fit Virtual Twins models (Foster et al. (2011) <doi:10.1002/sim.4322>) for identifying subgroups with differential effects in the context of clinical trials while controlling the probability of falsely detecting a differential effect when the conditional average treatment effect is uniform across the study population using parameter selection methods proposed in Wolf et al. (2022) <doi:10.1177/17407745221095855>.

Files

tehtuner-0.3.1.zip

Files (378.3 kB)

Name Size Download all
md5:10aa633fd5d6dd58dd7ebd8349dea5f1
378.3 kB Preview Download

Additional details

References

  • Wolf, J. M., Koopmeiners, J. S., & Vock, D. M. (2022). A permutation procedure to detect heterogeneous treatment effects in randomized clinical trials while controlling the type I error rate. Clinical Trials, 19(5), 512–521. https://doi.org/10.1177/17407745221095855
  • Foster, J. C., Taylor, J. M. G., & Ruberg, S. J. (2011). Subgroup identification from randomized clinical trial data. Statistics in Medicine, 30(24), 2867–2880. https://doi.org/10.1002/sim.4322