Published November 25, 2022 | Version v2
Dataset Open

Global dataset for "Global leaf-trait mapping based on optimality theory "

  • 1. Imperial College London
  • 2. German Centre for Integrative Biodiversity Research
  • 3. Tsinghua University
  • 4. Western Sydney University

Description

This repository contains Global data used for “Global leaf-trait mapping based on optimality theory” published in GEB.

  1. Global_Maps_SLA represents climatology of published Global SLA used for comparison (details products see table 1 and figure 4).
  2. Global_Maps_Na represents climatology of published Global Narea used for  comparison  (details see table 1 and figure 4).
  3. Global_Maps_Nmass represents climatology of published Global Nmass used for comparison (details see table 1 and figure 4).
  4. TS_SLA is simulated time-series of SLA based on optimality theories from 1992 to 2015
  5. TS_Na is simulated time-series of Narea based on optimality theories from 1992 to 2015
  6. TS_Nmass is simulated  time-series of  Nmass based on optimality theories  from 1992 to 2015
  7. TS_LMA_decidudous  is simulated time-series of  deciduous LMA  based on optimality theories from 1982 to 2016
  8. TS_LMA_evergreen is simulated time-series of evergreen LMA  based on optimality theories from 1982 to 2016
  9. TS_Vcmax25 is simulated time-series of Vcmax25  based on optimality theories from 1982 to 2016

Files

Files (199.7 MB)

Name Size Download all
md5:a0ca2f6894b7eaf51828a63198f57651
4.0 MB Download
md5:79b4c040ddfed3715a030ae15242d201
4.8 MB Download
md5:b7d5bc6e6b42fd7f1747d27911c11cce
7.3 MB Download
md5:79130c2ccd15c174b7333ed4c9956141
36.3 MB Download
md5:86fc2e5dfcd92c8623276e3080b3e488
36.3 MB Download
md5:962bc8c818a8fb897538a29901fa81b8
24.9 MB Download
md5:acbe549c7e313262b9b058f514ba3f1f
24.9 MB Download
md5:22d872c7d27c4a2f6fb459fbe1dd38d8
24.9 MB Download
md5:0503493dde5a93feedc0ba2543c0d870
36.3 MB Download

Additional details

Funding

European Commission
REALM – Re-inventing Ecosystem And Land-surface Models 787203