Published November 8, 2022 | Version 1.0.0
Dataset Open

MILAN project: raw images of deep sky objects captured with a Stellina observation station -- [2022-10]

  • 1. Luxembourg Institute of Science and Technology

Description

During the MILAN research project (MachIne Learning for AstroNomy), the research team uses Stellina observation stations to collect raw images of deep sky objects. 

The Stellina observation station has an apochromatic ED doublet with an aperture of 80 mm and a focal length of 400 mm - focal ratio of f/5. It is equipped with a Sony IMX 178 CMOS sensor with a resolution of 6.4 million pixels (3096 x 2080 pixels). An anti-pollution filter is placed in front of the camera sensor. The station also has a fully automated alt-azimuth mount: setup, object tracking and focusing are also automatic. Stellina also has an integrated field rotator that adapts to the target.

Thus, the research team built a dataset that faithfully represents what can be obtained during classical Electronically Assisted Astronomy sessions in the Luxembourg Greater Region:
- targets: representative set of deep sky objects from the Messier / NGC / IC / Barnard catalogs during the period.
- type of targets: nebulaes, planetary nebula, galaxies, globular clusters, open clusters
- for each observation session: sub-frames of 10 seconds exposure time and total cumulative duration of ~15/30 minutes (depending of the target) -- bad sub-frames were not filtered.

The dataset is composed of ZIP files -- and each zip file contain raw images in FITS format (Flexible Image Transport System): data come directly from the Sony IMX178 sensor of the Stellina observation station (no debayerisation and no post processing).

This research was funded by the Luxembourg National Research Fund (FNR), grant reference 15872557.

To refer to or to cite this work, please use: "Parisot, O., Hitzelberger, P., Bruneau, P., Krebs, G., Destruel, C., & Vandame, B. (2023). MILAN Sky Survey, a dataset of raw deep sky images captured during one year with a Stellina automated telescope. Data in Brief, 48, 109133."

 

MILAN project team members: Olivier Parisot (LIST), Patrik Hitzelberger (LIST), Pierrick Bruneau (LIST), Gilles Krebs (VAONIS, Christophe Destruel (VAONIS), Benoît Vandame (VAONIS).

More information about the MILAN project: https://www.fnr.lu/results-2021-1-bridges-call/.

More information about VAONIS instruments: https://vaonis.com

More information about Luxembourg of Science and Technology (LIST): https://www.list.lu

Data license for files: Attribution-NonCommercial-NoDerivatives 4.0 International

Files

Barnard133-20221009.zip

Files (40.1 GB)

Name Size Download all
md5:a2921bc4e0d96bc62ba997be688dc642
2.5 GB Preview Download
md5:cb71f533d87ce527e3e80607ff55cf95
1.5 GB Preview Download
md5:485e42d3915f950f2906a1fb34ba66e7
1.4 GB Preview Download
md5:4ef71f1939429bda3fcbbfe433bf5190
1.9 GB Preview Download
md5:33bfef799d58130d19ebbe57e4a143c6
2.0 GB Preview Download
md5:1f05b7554d7ba6011bb7066aafcfd24e
1.5 GB Preview Download
md5:c70f85fe39eb601f25b595299c688bfd
19.1 kB Preview Download
md5:e19256b7544a8d41f744aae423912842
546.9 MB Preview Download
md5:3c23985dae79d3c08637928b6bffd20c
1.8 GB Preview Download
md5:71360ddb1b85c995379aa2003ef4ae5a
588.1 MB Preview Download
md5:860df49c4a9ed64663047fb494586ed8
1.3 GB Preview Download
md5:93dd50285cab7e31d0d71f6d15080c9e
1.6 GB Preview Download
md5:022b9ab6d13287a5911d5eb1e4c0b8df
1.2 GB Preview Download
md5:74b5d136d93f6ba620f55c712147e6e5
436.2 MB Preview Download
md5:0f47d74bf4979f0413d40c67f82d34b5
2.0 GB Preview Download
md5:1a19ac10f610ff3e06e57c9bd35b10b7
1.3 GB Preview Download
md5:d8470867c7fb638d7e98fa9783dd3bd2
1.1 GB Preview Download
md5:8a7c80ccbe18a6bd6d30784e6b908c58
2.2 GB Preview Download
md5:6653174653736bc1ba922ba99606df4e
4.3 GB Preview Download
md5:5a1c8bdbbd3c504390fe209d2d6c67b5
537.5 MB Preview Download
md5:7703731c6ee80d349ffb19472a9c0c50
1.6 GB Preview Download
md5:0ab9332d133fc0d0459d62c259cee5ae
2.9 GB Preview Download
md5:5aaf305680457879574bcab9db41c89a
651.0 MB Preview Download
md5:9d9db86a9ccb5b8cb870881e1d0afa5d
2.4 GB Preview Download
md5:86f2f5bedb6ea2e5c10d5cf52c500837
2.8 GB Preview Download