Planned intervention: On Thursday 19/09 between 05:30-06:30 (UTC), Zenodo will be unavailable because of a scheduled upgrade in our storage cluster.
Published July 18, 2022 | Version v1
Dataset Open

Statistical and machine learning methods for evaluating trends in air quality under changing meteorological conditions

  • 1. Massachusetts Institute of Technology; Stanford University
  • 2. The University of Texas at Austin
  • 3. Massachusetts Institute of Technology

Description

This repo includes the GEOS-Chem simulations and R scripts that are needed to replicate and evaluate the conclusions from Qiu, Zigler, and Selin, ACP, 2022 "Statistical and machine learning methods for evaluating trends in air quality under changing meteorological conditions".

The GEOS-Chem simulations

  • For the US (2011-2017):
    • observational_o3_pm_2011_2017_us.rds: the simulated daily PM2.5 and O3 concentrations, and MERRA-2 meteorological features in the observational scenarios (changing meteorology, changing emissions).
    • counterfactual_o3_pm_2011_2017_us.rds: the simulated daily PM2.5 and O3 concentrations, and MERRA-2 meteorological features in the counterfactual scenarios (constant meteorology, changing emissions).
    • constant_emis_o3_pm_2012_2017_us.rds: the simulated daily PM2.5 and O3 concentrations in the constant-emission scenarios (constant meteorology, constant emissions).
    • regional_features_2011_2017_4x5_us.rds: the MERRA-2 meteorological features in the observational scenarios (aggregated to 4x5 degrees), inputs for the "RF-regional" model.
  • For China (2013-2017):
    • observational_o3_pm_2013_2017_china.rds: the simulated daily PM2.5 and O3 concentrations, and MERRA-2 meteorological features in the observational scenarios (changing meteorology, changing emissions).
    • counterfactual_o3_pm_2013_2017_china.rds: the simulated daily PM2.5 and O3 concentrations, and MERRA-2 meteorological features in the counterfactual scenarios (constant meteorology, changing emissions).
    • constant_emis_o3_pm_2014_2017_china.rdsthe simulated daily PM2.5 and O3 concentrations in the constant-emission scenarios (constant meteorology, constant emissions).
    • regional_features_2013_2017_4x5_china.rds: the MERRA-2 meteorological features in the observational scenarios (aggregated to 4x5 degrees), inputs for the "RF-regional" model.

R scripts:

  • main.r: the main script to perform statistical correction of meteorological variability.
  • main.r uses functions from the other R script files (see below) which perform different statistical correction methods, respectively.  
  • parametric_regression_methods.r: performs meteorological correction with parametric regression methods (MLR, polynomial, spline, GAM)
  • tune_RF_regional.r and RF_regional.r: perform the meteorological correction with the "RF-regional" model
  • GEOS_Chem_constant_emis.r: performs the meteorological correction using the simulations from the constant emission scenarios from the GEOS-Chem model

 

Files

Files (3.6 GB)

Name Size Download all
md5:ae6224f6c98318d1ccffc2b3c0932a4b
69.2 MB Download
md5:f2ea4cda0dc0427d22eb10989b9ca3b3
57.5 MB Download
md5:667af0b76ebba72e5718f73418d27a0f
1.0 GB Download
md5:0ea23ada48239d5546ad3b33895e212a
444.4 MB Download
md5:8d03ecace03450f59f70d88ae68e4f0c
1.8 kB Download
md5:6cb61005bd78cde2d1a9d0c024ca454e
5.9 kB Download
md5:2dc29f10a2dc3eccf322bfa95da3f787
1.0 GB Download
md5:d53a20a203725e2347f0e5edc5720d17
974.7 MB Download
md5:50e89b7b13aa6f4fde5cf4603f942853
6.5 kB Download
md5:34da4f9ec3b5820ea30dce6315da561b
33.9 MB Download
md5:1afcd74d110eb74c295fcfac60fb38b4
31.6 MB Download
md5:196d77922b780a2470b410c1f967e2eb
6.7 kB Download
md5:73e5d38b5337da6d05a194350d4eae2b
4.9 kB Download