Published March 28, 2022 | Version v1
Conference paper Open

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (Mini Train/Validation Splits)

  • 1. Seoul National University

Description

This repository contains N-ImageNet along with its variants. N-ImageNet is a large-scale dataset for event-based object recognition that also allows robustness evaluation in various external conditions. The train split is separated into 10 parts. To extract the event data in each .zip file, run the following command:

unzip train_Part_i.zip
for f in $( ls train_Part_i ); do tar -xvf train_Part_i/$f -C train_Part_i/ ;done
rm -rf train_Part_i/*.tar.gz

After this, make a separate folder extracted_train and extracted_val as specified in https://github.com/82magnolia/n_imagenet#dataset-setup and start using mini N-ImageNet!

Files

mini_validation_split.zip

Files (45.6 GB)

Name Size Download all
md5:5b45f99c53c4ce960f4052deefd7e1cc
1.6 GB Preview Download
md5:4567a4018b1ac46c4cf69593b618342e
102.9 MB Preview Download
md5:18f67f7ee2c75787c3d5e8fea6c901d5
4.0 GB Preview Download
md5:c689bca9b08915c51a7ee01c09eacfb3
4.1 GB Preview Download
md5:953f3198f7590a1b3a21f1a6c487d427
4.5 GB Preview Download
md5:928d55a8a678a2accf7bb5f73bb46a0a
4.6 GB Preview Download
md5:c903e7f90905a6e70f8fbda3ec0e213a
4.8 GB Preview Download
md5:001d0c51a78611ed0cb1613247ae4968
4.8 GB Preview Download
md5:ec385c206ad44ea6070f3d55306e800c
4.4 GB Preview Download
md5:66f28e0b902a0bde1d1c7047ced3d852
4.4 GB Preview Download
md5:72ca3f8e4fd0e22d4e589015d11ab10c
4.0 GB Preview Download
md5:3541683ac1439bcf50e2888dbafe84ab
4.4 GB Preview Download
md5:19e708a252ec81baa1a1b09a2c6c970b
4.3 MB Preview Download