Published February 2, 2022 | Version 1.0
Dataset Open

FiN: A Smart Grid and Powerline Communication Dataset

  • 1. German Research Center for Artificial Intelligence (DFKI)
  • 2. University of Wuppertal

Description

# FiN: A Smart Grid and Powerline Communication Dataset

Within the Fühler-im-Netz (FiN) project 38 BPL modems were distributed in three different areas of a German city with about 150.000 inhabitants. Over a period of 22 months, an SNR spectrum of each connection between adjacent BPL modems was generated every quarter of an hour. The availability of this data from actual practical use opens up new possibilities to face the increasing complex challenges in smart grids.

~~ For detailed information we would like to refer to the full paper. ~~

Attributs | FiN 1
-------- | --------
SNR measurements   | 3.3 Mio
Timespan   | ~2.5yrs
*Metadata*   |
Sleeve count per section   | ☑
Cable length, typ, cross section   | ☑
Number of conductors   | ☑
Year of installation  | ☑
Weather by openweather     | ☑

## Paper abstract
The increasing complexity of low-voltage networks poses a growing challenge for the reliable and fail-safe operation of power grids. The reasons for this are, for example, a more decentralized energy generation (photovoltaic systems, wind power, ...) and the emergence of new types of consumers (e-mobility, domestic electricity storage, ...). At the same time, the low-voltage grid is largely unmonitored and local power failures are sometimes detected only when consumers report the outage. To end the blind flight within the low voltage network, the use of a broadband over power line (BPL) infrastructure is a possible solution. In addition to the purpose of establishing a communication infrastructure, BPL also offers the possibility of evaluating the cables themselves, as well as the connection quality between individual cable distributors based on their Signal-to-Noise-Ratio (SNR). Within the Fühler-im-Netz pilot project 38 BPL modems were distributed in three different areas of a German city with about 100.000 inhabitants. Over a period of 21 months, an SNR spectrum of each connection between adjacent BPL modems was generated every quarter of an hour. The availability of this data from actual practical use opens up new possibilities to react agilely to the increasingly complex challenges.

 


# FiN-Dataset release 1.0

### Content
- 68 data .npz files
- 3 weather csv files
- 2 metadata csv files
- this readme

### Summary
The dataset contains ~3.7B SNR measurements divided into 68 1-to-1 connections. Each of the 1-to-1 connections can split into additional segments, e.g. if part of a cable was replaced due to a cable break.
All 68 connections are formed by 38 different nodes distributed over three different locations. Due to data protection regulations, the exact location of the nodes cannot be given. Therefore, each of the 38 nodes is uniquely identified by an ID.

### Data
The filename specifies the location, the ID of the source node and the destination ID.
Example: "loc03_from26_to27.npz"
    -> Node is in lcation 3
    -> Source node is 26
    -> Destination node is 27

The .npz file contains a Python dict that is structured as follows:
    
    data_dict = {"timestamps": np.array(...),        --> Nx1 Timestamps
             "spectrum_rx": np.array(...),        --> Nx1536    SNR assesments on 1536 channels in RX directions. Range is 0.00dB...40.00dB
             "tonemap_rx": np.array(...),        --> Nx1536    Tonemaps in RX directions. Range is 0...7
             "tonemap_tx": np.array(...)}        --> Nx1536    Tonemaps in TX directions. Range is 0...7


### Weather
In addition to the measured data, we add weather data provided by https://openweathermap.org for all three locations. The weather data is stored in CSV format and contains many different weather attributes. Detailed information on the weather data can be found in the official documentation: https://openweathermap.org/history-bulk


### Metadata
    --> nodes.csv
        Contains in overview of all nodes, their id, corresponding location and voltage level.

    --> connections.csv
        Contains all available metadata for the 68 1-to-1 connections and their individual segements.

        + year_of_installation            -> year in which the cable was installed
        + year_approximated            -> Indicates whether the year was approximated or not (e.g. due to missing records)
        + cable_section                -> identifies the segment or section described by the metadata
        + length                 -> length in meters
        + number_of_conductors             -> identifier for the conductor structure in the cable
        + cross-section             -> cross-section of the conductors
        + voltage_level                -> identifier for the voltage level (MV=mid voltage; LV=low voltage)
        + t_sleeves                -> number of T-sleeves installed within a section
        + type                    -> cable type
        + src_id                -> id of the source node
        + dst_id                -> id of the destination node

 

Files

connections.csv

Files (1.7 GB)

Name Size Download all
md5:455456d510947236d01787c13da1afe1
11.3 kB Preview Download
md5:3763de7fa1ada1a19a929c7c18852139
11.7 MB Download
md5:9e37b19b9ef1d80a04fea660526985ff
13.3 MB Download
md5:c33fd12aa2537d89639121c131e96bc9
7.8 MB Download
md5:1e937252450e698a1c97df54c1a567f1
7.1 MB Download
md5:80250d63671e8a84b3a675b229f2acec
42.4 MB Download
md5:47d7f19d975226bb9516c8ab3ebd6318
36.2 MB Download
md5:f28e2095ec557bb7fa8ca7e022e2a04c
750.3 kB Download
md5:0bf513207f275a797df81cda6581a38e
10.1 MB Download
md5:aa07448575897892d7f7dce9d5f9b51c
9.4 MB Download
md5:891fb6cb3c76fca6d43c891092c19553
815.3 kB Download
md5:3ac2f2cef689558380ce35a4c380f8c1
11.0 MB Download
md5:3b812c28fe632485b1a26e57222db7eb
878.8 kB Download
md5:535c1a241e363a2322bfacccbda84226
7.7 MB Download
md5:224a7c0cc441655e8bb32a323b05f949
875.4 kB Download
md5:79d13c4f71c902b6b5d7c6cb17237e0b
5.8 MB Download
md5:37b8c36155ea1472d12e39320eff7ab4
4.0 MB Download
md5:08ef7853a33cfb4d05792c128b962ddf
5.4 MB Download
md5:f088c266a2cbcaa455bf9ca58734140e
3.3 MB Download
md5:67cf09fd0f979043f58b3a2215c9d61a
5.8 MB Download
md5:f1e5684a968c3bb278aac5600084c3be
3.7 MB Download
md5:f4eb335ee1d9585f2f4f491c5656cb55
10.3 MB Download
md5:ad4d483f6b1b5b4c3c7a6176fa58680a
7.2 MB Download
md5:d9442a76fbb59786c17f5b4c506cbfb8
3.8 MB Download
md5:a6b8594b6728f9884230f1585769f539
4.0 MB Download
md5:8f5e591fca482541b4177f2a84da08d8
41.7 MB Download
md5:88254f9203da4580321c3034bad6ab3c
22.6 MB Download
md5:6deb150289c6220d2858057049d9b441
2.2 MB Download
md5:116caa89acf080eade4e574a367f6bea
20.3 MB Download
md5:adce7b3ac9a6561b40c2be5ddbd1f708
24.5 MB Download
md5:da6a974d5d29c57959ba9c3b24f44d53
51.9 MB Download
md5:6b6c7352691cc2d0a9a7cbe0390d73c6
65.5 MB Download
md5:28727f570adfaaf21d5b0b896bc87d69
49.6 MB Download
md5:39ec70f6f85dd4c09d1ea0798f56a5dc
21.8 MB Download
md5:0d1f06bccf90da0e396ee0626a977307
43.1 MB Download
md5:e24c955348f3171301c28b2c779daf17
742.1 kB Download
md5:bf022ab376cd3cf612b2be44a9ba4059
32.5 MB Download
md5:6bf416a9ad3900b688ec81f2ee601662
43.7 MB Download
md5:8ba8650225955eba36b7d3c67246d214
2.5 MB Download
md5:d2d0c4b0263f17466a2bed9bb27bdd44
46.2 MB Download
md5:494949251b347c0e78ddf8ff2e8c9cff
57.7 MB Download
md5:a6a24cfc870041e00f436b7ba9fbd226
3.8 MB Download
md5:d71e6c39d5b35e1516004eb47b3b2dd1
44.6 MB Download
md5:b189022d20b51ca2b295e28932ee7c55
741.9 kB Download
md5:c3d0dd7f082a932238d0245da9411bd9
48.9 MB Download
md5:75c87ba1be42173e7f2e01f237390641
741.9 kB Download
md5:5b5aa7b233461a647d840d96ad63b286
52.5 MB Download
md5:f00e02516452a48ccbe64fc955234279
52.6 MB Download
md5:9d28fcf2d718e463753cc7d85a36c915
45.8 MB Download
md5:8e43bfc8fa2ece1948bc48d7095f08b0
63.9 MB Download
md5:6e7a2f24d92acc2df75080eba095ba2f
45.5 MB Download
md5:50509b0eecee9833f0ccdb50f7ea3119
48.8 MB Download
md5:e5b0b58d1b2f0d0861f53762d054ea40
44.2 MB Download
md5:760c61dd70a8b0fe696945112d080ae4
44.5 MB Download
md5:22adbddb6a1f5ff123192d17cd1383fb
742.1 kB Download
md5:1991308f43723d0eb3dd698acb320cce
39.2 MB Download
md5:a35072fb64cc192a9a07df19ce43dbab
21.2 MB Download
md5:cfc7b6c0745b9ad04bdcd332bff95e40
30.3 MB Download
md5:9e0e7b310edbc7d2a331c798411537ad
35.1 MB Download
md5:daac64cc2a47d9684cb9d73e039d21e3
22.1 MB Download
md5:ae6562f11717c4b4fefa8c3028d945a1
27.8 MB Download
md5:dad621507d35bfcf72aa23cae0e112ea
32.7 MB Download
md5:4441deb223a0e898cd6772557cad4ec0
30.5 MB Download
md5:74c92870b073a0bc5eadb5e1bc90df25
44.9 MB Download
md5:fb4dce589fcc98c3c24c7f7f36e1b1ee
29.6 MB Download
md5:6386da8f906fc7603e418cad79519c30
26.2 MB Download
md5:49937207ea0663f3f784279e07fb88b2
24.1 MB Download
md5:4381174d46c46c7364706cf7e69c5618
4.5 MB Download
md5:c20761eb3f795b86e8bd162d24d52b5e
35.5 MB Download
md5:0df054b9191a403324750bcc8dd325ad
663 Bytes Preview Download
md5:7911623372f17baac8cd8653ef5bd661
2.6 kB Preview Download
md5:6152fbeb1070fa942233515f804caf8d
3.2 MB Preview Download
md5:68dd0e0b89b5ef15eb8c6062c24dae3d
3.2 MB Preview Download
md5:304fdead7c044ca94e08c13fa57e05c1
3.2 MB Preview Download