Planned intervention: On Wednesday June 26th 05:30 UTC Zenodo will be unavailable for 10-20 minutes to perform a storage cluster upgrade.
Published February 29, 2020 | Version v1
Journal article Open

The Distance Monitoring Tools Between the Ends of the Nozzle with the Workpiece for Gas Metal Arc Welding

  • 1. Faculty of Technical & Vocational Education, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia.
  • 1. Publisher


Gas Metal Arc Welding (GMAW) is a welding process that combines an arc between the continuous electrode, which produces a mixing by heat generated by the arc melting the base metal electrodes. This process uses an inert gas as a protective element in the welding area. This study aims to analyze the welding quality level produced by students using the application in terms of monitoring the distance, angle, and speed between the ends of the nozzle with the workpiece for GMAW. In this study, one of the actual experimental designs used as the pre-test and post-test design. The experimental group in this study was using distance monitoring tools, while the control group was using traditional teaching strategies that commonly used. The contents of the control group teaching were identical to the experimental group. The selected 22 respondents via purposive sampling consisted of students of the welding field, specifically metal fabrication. In this study, the research instrument used is through pre-test and post-test evaluation rubric. In this study, data were collected through a quantitative approach using Statistical Package for the Social Science (SPSS) version 22.0 software. The analysis of this study was carried out by conducting a descriptive analysis of data obtained by using statistics, such as per centage, mean, and standard deviation. Inference analysis was then performed to interpret the scores before and after treatment based on the test score data obtained in groups using the built-in distance monitoring tool. The inference statistics used in this study was two-way ANOVA. The findings of this study demonstrated the effectiveness of the distance estimation method by using distance monitoring tools between the ends of the nozzle and the workpiece for GMAW. This was attributable to the built-in distance monitoring tool, which could assist respondents in determining the proper distance between the ends of the nozzle and the workpiece to obtain a good and perfect welding result. Based on these results, there was a difference in the level of welding quality produced by the control and experimental groups.



Files (294.9 kB)

Name Size Download all
294.9 kB Preview Download

Additional details

Related works

Is cited by
Journal article: 2249-8958 (ISSN)


Retrieval Number