Published November 15, 2018 | Version v1
Dataset Open

Data from: Plasticity in root symbioses following shifts in soil nutrient availability during long-term ecosystem development

  • 1. University of Western Australia

Description

1. The vast majority of terrestrial plants form root symbioses with arbuscular mycorrhizal (AM) fungi to enhance nutrient (particularly phosphorus, P) acquisition, but some plant species also form dual symbioses involving ectomycorrhizal (ECM) fungi, with a subset of those also forming triple symbioses also involving dinitrogen (N2)-fixing bacteria. Whether these plants show plasticity in root symbioses to optimise nutrient acquisition depending on the type and strength of soil nutrient limitation (e.g., N vs. P) has been suggested, yet empirical evidence remains limited. Alternatively, the degree of investment or 'preference' in particular root symbioses might simply reflect differences in inoculum potential among soils of contrasting nutrient availability, reflecting adaptations of root symbionts to different edaphic conditions. 2. Here, we grew two co-occurring plant species forming triple (AM / ECM / N2-fixing; Acacia rostellifera) or dual (AM / ECM; Melaleuca systena) symbioses in soils of increasing age and contrasting nutrient availability from an Australian long-term soil chronosequence to disentangle the relative importance of abiotic factors (e.g., soil nutrient availability and stoichiometry) and biotic factors (e.g., soil inoculum potential) in determining root colonisation patterns and functional outcomes of these multiple root symbioses. 3. For both plant species, we found clear hump-shaped plant growth patterns along the pedogenesis-driven gradient in soil nutrient availability, with peak growth in intermediate-aged soils, while high levels of mycorrhizal colonisation by the 'preferred' root symbionts was maintained. We found large increases (540%) in foliar manganese concentrations with increasing soil age and declining P availability, suggesting that plants are also relying on the release of carboxylates to help acquire P in the most impoverished soils. Finally, we found that soil abiotic properties, such as strong differences in soil nutrient availabilities, are generally more important than soil inoculum potential in explaining these shifts in our plant and root responses. 4. Synthesis. Our study suggests that plants capable of forming multiple root symbioses show plasticity in their nutrient-acquisition strategies following shifts in soil nutrients during long-term ecosystem development, yet maintain a preference for certain root symbionts despite changes in soil microbial inoculum.

Notes

Files

foliar15N.csv

Files (68.7 kB)

Name Size Download all
md5:6ab6b96448b68554f689cb0d271a77d6
15.4 kB Preview Download
md5:db4803c24cc07ef7f697a4c5c81eea4d
13.0 kB Preview Download
md5:db5549e6cb3643ecfe68ca372adf58ad
12.8 kB Preview Download
md5:66006c2856c73322644b6278d1ff8d3c
12.5 kB Preview Download
md5:63cfc0fd4e299865717705cd065933c7
7.5 kB Preview Download
md5:1a90b34535d5bb5989ada444a8d988c3
7.4 kB Preview Download

Additional details

Related works

Is cited by
10.1111/1365-2745.13103 (DOI)