There is a newer version of the record available.

Published June 3, 2021 | Version v2
Journal article Open


  • 1. Instituto Federal Sul Rio-grandense, Câmpus CaVG, Pelotas, Brasil


Nesta análise verificou-se a aderência do principio de conservação da energia mecânica do fóton (CEF) à descrição dos redshifts gravitacional e cosmológico. Constatou-se que o redshift z(CEF) explica completamente a natureza gravitacional, refrativa e doppler do redshift cosmológico. O redshift z(CEF) mostra-se capaz de descrever variações de redshift mantendo H0 constante. Verificou-se as características de uma matéria desconhecida (DM), invisível e com índice de refração negativo e relativístico, possivelmente matéria escura. Apresenta-se a classificação dos domínios do redshift cosmológico para altas e baixas velocidades da DM.



Files (447.5 kB)

Name Size Download all
447.5 kB Preview Download

Additional details


  • ARP, H.; FULTON, C.; CAROSATI, D. Intrinsic Redshifts in Quasars and Galaxies. 2013
  • Ashmore, Lyndon E. Calculating the redshifts of distant galaxies from first principles by the new tired light theory (NTL). JIOP Conf. Series: Journal of Physics: Conf. Series 1251 (2019) 012007.
  • Bouchard, F., Harris, J., Mand, H., Boyd, RW & Karimi, E. Observation of subluminal twisted light in vacuum. Optica 3, 351–354 (2016)
  • CARDOSO, Daniel Souza. A conservação da energia mecânica do fóton, em energia cinética rotacional, frente à alguns resultados e expectativas teóricas com interferômetros de Michelson na literatura. Ciência e Natura, v. 40, p. e59, 2018.
  • CARDOSO, Daniel Souza. Theory of Conservation of Photon Mechanical Energy , in the Transition between Two Middles , in Rotational Kinetic Energy. International Journal of Science and Research (IJSR) 7 (7), 810-815.
  • Chyla, W. T. (2013). Refraction in a relativistic medium. Optik - International Journal for Light and Electron Optics, 124(13), 1477–1479. doi:10.1016/j.ijleo.2012.04.012
  • DO, Tuan et al. Relativistic redshift of the star S0-2 orbiting the Galactic center supermassive black hole. Science, v. 365, n. 6454, p. 664-668, 2019.
  • EINSTEIN, Albert. Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes. Annalen der Physik, v. 340, n. 10, p. 898-908, 1911.
  • F. Zwicky .ON THE REDSHIFT OF SPECTRAL LINES THROUGH INTERSTELLAR SPACE .Proceedings of the National Academy of Sciences Oct 1929, 15 (10) 773-779; DOI: 10.1073/pnas.15.10.773
  • FERRERAS, Ignacio; TRUJILLO, Ignacio. Testing the wavelength dependence of cosmological redshift down to Δz∼ 10− 6. The Astrophysical Journal, v. 825, n. 2, p. 115, 2016.
  • Gardner, S., Latimer, D. C., & Marshak, M. L. (2009). Dark Matter Constraints from a Cosmic Refractive Index. Doi:10.1063/1.3293792
  • Hadi, M. (2019, September 3). A refractive index of a kink in curved space.
  • Imhof, C., Zengerle, R. Experimental verification of negative refraction in a double cross metamaterial. Appl. Phys. A 94, 45–49 (2009).
  • L. Wright. Errors in Tired Light Cosmology.∼wright/tiredlit.htm, Apr 2008.
  • Lavenda, B. (2017) The Optical Properties of Gravity. Journal of Modern Physics, 8, 803-838. doi: 10.4236/jmp.2017.85051.
  • Lopresto, J. C., Chapman, R. D., & Sturgis, E. A. Solar gravitational redshift. Solar Physics, vol. 66, June 1980, p. 245-249.
  • Ming-Hui Shao, Na Wang and Zhi-Fu Gao (December 7th 2018). Tired Light Denies the Big Bang. IntechOpen, DOI: 10.5772/intechopen.81233. Available from:
  • Muhan Choi, Jong-Ho Choe, Byungsoo Kang, Choon-Gi Choi. A flexible metamaterial with negative refractive index at visible wavelength. Current Applied Physics, Volume 13, Issue 8, 2013, Pages 1723-1727, ISSN 1567-1739,
  • ETRIE, R. M. Some Problems of Stellar Motions. Journal of the Royal Astronomical Society of Canada, v. 43, p. 1, 1949.
  • Petrov, N.I. Speed of structured light pulses in free space. Sci Rep 9, 18.332 (2019).
  • PINCHUK, Anatoliy O.; SCHATZ, George C. Metamaterials with gradient negative index of refraction. JOSA A, v. 24, n. 10, p. A39-A44, 2007.
  • Radosz, A., Augousti, AT & Siwek, A. On the nature of cosmological redshift and spectral shift in Schwarzschild-like and other spacetimes. Gen Relativ Gravit 45, 705–715 (2013).
  • ROGERS, Adam. Frequency-dependent effects of gravitational lensing within plasma. Monthly Notices of the Royal Astronomical Society, v. 451, n. 1, p. 17-25, 2015.
  • ROSENBERG, Leslie J.; VAN BIBBER, Karl A. Searches for invisible axions. Physics Reports, v. 325, n. 1, p. 1-39, 2000.
  • SALATI, Pierre. Cosmology and dark matter. In: Particle Physics: Ideas and Recent Developments. Springer, Dordrecht, 2000. p. 417-510.
  • Salucci, P. The distribution of dark matter in galaxies. Astron Astrophys Rev 27, 2 (2019).
  • arazin, X., Couchot, F., Djannati-Ataï, A. et al. Can the apparent expansion of the universe be attributed to an increasing vacuum refractive index? EUR. Phys. J. C 78, 444 (2018).
  • SOARES, Domingos SL. O efeito Hubble. 2009
  • SOARES, Domingos. De Schwarzschild a Newton. Rev. Bras. Ensino Fís. [online]. 2020, vol.42 [cited 2020-11-28], e20190262. Available from: <>. Epub Feb 07, 2020. ISSN 1806-9126.
  • TAO, Hu et al. Flexible terahertz metamaterials: Towards a terahertz metamaterial invisible cloak. In: 2008 IEEE International Electron Devices Meeting. IEEE, 2008. p. 1-4.
  • TOLOBA, Elisa et al. Dark matter in ultra-diffuse galaxies in the Virgo cluster from their globular cluster populations. The Astrophysical Journal Letters, v. 856, n. 2, p. L31, 2018.
  • Trinchera, A. (2021) Redshift Anomaly on the Solar Disk as Multiple Interactions between Photons and Electrons. Journal of High Energy Physics, Gravitation and Cosmology, 7, 1-51. doi: 10.4236 / jhepgc.2021.71001.
  • WANG, Ling Jun. An Alternative Cosmology to the Big Bang-Dispersive Extinction Theory of Red Shift. Applied Physics Research, v. 5, n. 2, p. 47, 2013.
  • Yang, W., Leng, J., Zhang, S. et al. Detecting Topological Defect Dark Matter Using Coherent Laser Ranging System. Sci Rep 6, 29519 (2016).