Published December 10, 2009 | Version v1
Thesis Open

Propagation of Electron-Acoustic Waves in a Plasma with Suprathermal Electrons

  • 1. Queen's University Belfast

Description

Electron-acoustic waves occur in space and laboratory plasmas where two distinct electron populations exist, namely cool and hot electrons. The observations revealed that the hot electron distribution often has a long-tailed suprathermal (non-Maxwellian) form. The aim of the present study is to investigate how various plasma parameters modify the electron-acoustic structures. We have studied the electron-acoustic waves in a collisionless and unmagnetized plasma consisting of cool inertial electrons, hot suprathermal electrons, and mobile ions. First, we started with a cold one-fluid model, and we extended it to a warm model, including the electron thermal pressure. Finally, the ion inertia was included in a two-fluid model. The linear dispersion relations for electron-acoustic waves depicted a strong dependence of the charge screening mechanism on excess suprathermality. A nonlinear (Sagdeev) pseudopotential technique was employed to investigate the existence of electron-acoustic solitary waves, and to determine how their characteristics depend on various plasma parameters. The results indicate that the thermal pressure deeply affects the electron-acoustic solitary waves. Only negative polarity waves were found to exist in the one-fluid model, which become narrower as deviation from the Maxwellian increases, while the wave amplitude at fixed soliton speed increases. However, for a constant value of the true Mach number, the amplitude decreases for increasing suprathermality. It is also found that the ion inertia has a trivial role in the supersonic domain, but it is important to support positive polarity waves in the subsonic domain.

Files

MSc_Thesis_Danehkar_2009.pdf

Files (844.6 kB)

Name Size Download all
md5:4fa11768f2305dd5f89ff061fab0793c
844.6 kB Preview Download

Additional details

Identifiers

Bibcode
2009MsT..........1D
ISBN
978-1-339-29935-8
arXiv
arXiv:1710.08271

References

  • Abbasi H., Pajouh H. H., 2007, Physics of Plasmas, 14, 012307
  • Armstrong T. P., Paonessa M. T., Bell E. V., II, Krimigis S. M., 1983, Journal of Geophysical Research, 88, 8893
  • Bale S. D., Kellogg P. J., Larsen D. E., Lin R. P., Goetz K., Lepping R. P., 1998, Geophysical Research Letters, 25, 2929
  • Baluku T. K., Hellberg M. A., 2008, Physics of Plasmas, 15, 123705
  • Berthomier M., Pottelette R., Malingre M., 1998, Journal of Geophysical Research, 103, 4261
  • Berthomier M., Pottelette R., Malingre M., Khotyaintsev Y., 2000, Physics of Plasmas, 7, 2987
  • Berthomier M., Pottelette R., Treumann R. A., 1999, Physics of Plasmas, 6, 467
  • Cattell C. A., Dombeck J., Wygant J. R., et al., 1999, Geophysical Research Letters, 26, 425
  • Christon S. P., Mitchell D. G., Williams D. J., Frank L. A., Huang C. Y., Eastman T. E., 1988, Journal of Geophysical Research, 93, 2562
  • Derfler H., Simonen T. C., 1969, Physics of Fluids, 12, 269
  • Dubouloz N., Pottelette R., Malingre M., Treumann R. A., 1991, Geophysical Research Letters, 18, 155
  • Feldman W. C., Anderson R. C., Bame S. J., et al., 1983, Journal of Geophysical Research, 88, 96
  • Franz J. R., Kintner P. M., Pickett J. S., 1998, Geophysical Research Letters, 25, 1277
  • Fried B. D., Gould R. W., 1961, Physics of Fluids, 4, 139
  • Gary S. P., Tokar R. L., 1985, Physics of Fluids, 28, 2439
  • Gill T. S., Kaur H., Saini N. S., 2006, Chaos, Solitons & Fractals, 30, 1020
  • Hellberg M. A., Mace R. L., 2002, Physics of Plasmas, 9, 1495
  • Hellberg M. A., Mace R. L., Armstrong R. J., Karlstad G., 2000, Journal of Plasma Physics, 64, 433
  • Henry D., Trguier J. P., 1972, Journal of Plasma Physics, 8, 311
  • Ikezawa S., Nakamura Y., 1981, Journal of the Physical Society of Japan, 50, 962
  • Kakad A. P., Singh S. V., Reddy R. V., Lakhina G. S., Tagare S. G., 2009, Advances in Space Research, 43, 1945
  • Kourakis I., Shukla P. K., 2004, Physical Review E, 69, 036411
  • Leubner M. P., 1982, Journal of Geophysical Research, 87, 6335
  • Lin C. S., Burch J. L., Shawhan S. D., Gurnett D. A., 1984, Journal of Geophysical Research, 89, 925
  • Mace R. L., Amery G., Hellberg M. A., 1999, Physics of Plasmas, 6, 44
  • Mace R. L., Hellberg M. A., 1995, Physics of Plasmas, 2, 2098
  • Matsumoto H., Kojima H., Miyatake T., Omura Y., Okada M., Nagano I., Tsutsui M., 1994, Geophysical Research Letters, 21, 2915
  • McKenzie J. F., Dubinin E., Sauer K., Doyle T. B., 2004, Journal of Plasma Physics, 70, 431
  • Nishihara K., Tajiri M., 1981, Journal of the Physical Society of Japan, 50, 4047
  • Pierrard V., Lemaire J., 1996, Journal of Geophysical Research, 101, 7923
  • Sagdeev R. Z., 1966, Reviews of Plasma Physics, 4, 23
  • Saini N. S., Kourakis I., Hellberg M. A., 2009, Physics of Plasmas, 16, 062903
  • Schippers P., Blanc M., AndrĂ© N., et al., 2008, Journal of Geophysical ResearchA, 113, A07208
  • Singh S. V., Lakhina G. S., 2004, Nonlinear Processes in Geophysics, 11, 275
  • Summers D., Thorne R. M., 1991, Physics of FluidsB, 3, 1835
  • Thomsen M. F., Gary S. P., Feldman W. C., Cole T. E., Barr H. C., 1983, Journal of Geophysical Research, 88, 3035
  • Tokar R. L., Gary S. P., 1984, Geophysical Research Letters, 11, 1180
  • Vasyliunas V. M., 1968, Journal of Geophysical Research, 73, 2839
  • Verheest F., Hellberg M. A., Lakhina G. S., 2007, Astrophysics and Space Sciences Transactions, 3, 15
  • Verheest F., Cattaert T., Lakhina G. S., Singh S. V., 2004, Journal of Plasma Physics, 70, 237