Propagation of Electron-Acoustic Waves in a Plasma with Suprathermal Electrons
Description
Electron-acoustic waves occur in space and laboratory plasmas where two distinct electron populations exist, namely cool and hot electrons. The observations revealed that the hot electron distribution often has a long-tailed suprathermal (non-Maxwellian) form. The aim of the present study is to investigate how various plasma parameters modify the electron-acoustic structures. We have studied the electron-acoustic waves in a collisionless and unmagnetized plasma consisting of cool inertial electrons, hot suprathermal electrons, and mobile ions. First, we started with a cold one-fluid model, and we extended it to a warm model, including the electron thermal pressure. Finally, the ion inertia was included in a two-fluid model. The linear dispersion relations for electron-acoustic waves depicted a strong dependence of the charge screening mechanism on excess suprathermality. A nonlinear (Sagdeev) pseudopotential technique was employed to investigate the existence of electron-acoustic solitary waves, and to determine how their characteristics depend on various plasma parameters. The results indicate that the thermal pressure deeply affects the electron-acoustic solitary waves. Only negative polarity waves were found to exist in the one-fluid model, which become narrower as deviation from the Maxwellian increases, while the wave amplitude at fixed soliton speed increases. However, for a constant value of the true Mach number, the amplitude decreases for increasing suprathermality. It is also found that the ion inertia has a trivial role in the supersonic domain, but it is important to support positive polarity waves in the subsonic domain.
Files
MSc_Thesis_Danehkar_2009.pdf
Files
(844.6 kB)
Name | Size | Download all |
---|---|---|
md5:4fa11768f2305dd5f89ff061fab0793c
|
844.6 kB | Preview Download |
Additional details
Identifiers
- Bibcode
- 2009MsT..........1D
- ISBN
- 978-1-339-29935-8
- arXiv
- arXiv:1710.08271
References
- Abbasi H., Pajouh H. H., 2007, Physics of Plasmas, 14, 012307
- Armstrong T. P., Paonessa M. T., Bell E. V., II, Krimigis S. M., 1983, Journal of Geophysical Research, 88, 8893
- Bale S. D., Kellogg P. J., Larsen D. E., Lin R. P., Goetz K., Lepping R. P., 1998, Geophysical Research Letters, 25, 2929
- Baluku T. K., Hellberg M. A., 2008, Physics of Plasmas, 15, 123705
- Berthomier M., Pottelette R., Malingre M., 1998, Journal of Geophysical Research, 103, 4261
- Berthomier M., Pottelette R., Malingre M., Khotyaintsev Y., 2000, Physics of Plasmas, 7, 2987
- Berthomier M., Pottelette R., Treumann R. A., 1999, Physics of Plasmas, 6, 467
- Cattell C. A., Dombeck J., Wygant J. R., et al., 1999, Geophysical Research Letters, 26, 425
- Christon S. P., Mitchell D. G., Williams D. J., Frank L. A., Huang C. Y., Eastman T. E., 1988, Journal of Geophysical Research, 93, 2562
- Derfler H., Simonen T. C., 1969, Physics of Fluids, 12, 269
- Dubouloz N., Pottelette R., Malingre M., Treumann R. A., 1991, Geophysical Research Letters, 18, 155
- Feldman W. C., Anderson R. C., Bame S. J., et al., 1983, Journal of Geophysical Research, 88, 96
- Franz J. R., Kintner P. M., Pickett J. S., 1998, Geophysical Research Letters, 25, 1277
- Fried B. D., Gould R. W., 1961, Physics of Fluids, 4, 139
- Gary S. P., Tokar R. L., 1985, Physics of Fluids, 28, 2439
- Gill T. S., Kaur H., Saini N. S., 2006, Chaos, Solitons & Fractals, 30, 1020
- Hellberg M. A., Mace R. L., 2002, Physics of Plasmas, 9, 1495
- Hellberg M. A., Mace R. L., Armstrong R. J., Karlstad G., 2000, Journal of Plasma Physics, 64, 433
- Henry D., Trguier J. P., 1972, Journal of Plasma Physics, 8, 311
- Ikezawa S., Nakamura Y., 1981, Journal of the Physical Society of Japan, 50, 962
- Kakad A. P., Singh S. V., Reddy R. V., Lakhina G. S., Tagare S. G., 2009, Advances in Space Research, 43, 1945
- Kourakis I., Shukla P. K., 2004, Physical Review E, 69, 036411
- Leubner M. P., 1982, Journal of Geophysical Research, 87, 6335
- Lin C. S., Burch J. L., Shawhan S. D., Gurnett D. A., 1984, Journal of Geophysical Research, 89, 925
- Mace R. L., Amery G., Hellberg M. A., 1999, Physics of Plasmas, 6, 44
- Mace R. L., Hellberg M. A., 1995, Physics of Plasmas, 2, 2098
- Matsumoto H., Kojima H., Miyatake T., Omura Y., Okada M., Nagano I., Tsutsui M., 1994, Geophysical Research Letters, 21, 2915
- McKenzie J. F., Dubinin E., Sauer K., Doyle T. B., 2004, Journal of Plasma Physics, 70, 431
- Nishihara K., Tajiri M., 1981, Journal of the Physical Society of Japan, 50, 4047
- Pierrard V., Lemaire J., 1996, Journal of Geophysical Research, 101, 7923
- Sagdeev R. Z., 1966, Reviews of Plasma Physics, 4, 23
- Saini N. S., Kourakis I., Hellberg M. A., 2009, Physics of Plasmas, 16, 062903
- Schippers P., Blanc M., André N., et al., 2008, Journal of Geophysical ResearchA, 113, A07208
- Singh S. V., Lakhina G. S., 2004, Nonlinear Processes in Geophysics, 11, 275
- Summers D., Thorne R. M., 1991, Physics of FluidsB, 3, 1835
- Thomsen M. F., Gary S. P., Feldman W. C., Cole T. E., Barr H. C., 1983, Journal of Geophysical Research, 88, 3035
- Tokar R. L., Gary S. P., 1984, Geophysical Research Letters, 11, 1180
- Vasyliunas V. M., 1968, Journal of Geophysical Research, 73, 2839
- Verheest F., Hellberg M. A., Lakhina G. S., 2007, Astrophysics and Space Sciences Transactions, 3, 15
- Verheest F., Cattaert T., Lakhina G. S., Singh S. V., 2004, Journal of Plasma Physics, 70, 237