Published April 23, 2021
| Version v1
Dataset
Open
Data from: Crop pests and predators exhibit inconsistent responses to surrounding landscape composition
Creators
- Karp, Daniel S.1
- Chaplin-Kramer, Rebecca2
- Meehan, Timothy D.3
- Martin, Emily A.4
- DeClerck, Fabrice5
- Grab, Heather6
- Gratton, Claudio7
- Hunt, Lauren8
- Larsen, Ashley E.9
- Martínez-Salinas, Alejandra10
- O'Rourke, Megan E.11
- Rusch, Adrien12
- Poveda, Katja6
- Jonsson, Mattias13
- Rosenheim, Jay A.1
- Schellhorn, Nancy A.14
- Tscharntke, Teja15
- Wratten, Stephen D.16
- Zhang, Wei17
- Iverson, Aaron L.6
- Adler, Lynn S.18
- Albrecht, Matthias19
- Alignier, Audrey20
- Angelella, Gina M.11
- Anjum, Muhammad Zubair21
- Avelino, Jacques22
- Batáry, Péter15
- Baveco, Johannes M.23
- Bianchi, Felix J. J. A.23
- Birkhofer, Klaus24
- Bohnenblust, Eric W.25
- Bommarco, Riccardo13
- Brewer, Michael J.26
- Caballero-López, Berta27
- Carrière, Yves28
- Carvalheiro, Luísa G.29
- Cayuela, Luis30
- Centrella, Mary6
- Ćetković, Aleksandar31
- Henri, Dominic Charles32
- Chabert, Ariane33
- Costamagna, Alejandro C.34
- De la Mora, Aldo35
- de Kraker, Joop36
- Desneux, Nicolas37
- Diehl, Eva38
- Diekötter, Tim39
- Dormann, Carsten F.40
- Eckberg, James O.41
- Entling, Martin H.42
- Fiedler, Daniela43
- Franck, Pierre44
- van Veen, F. J. Frank45
- Frank, Thomas46
- Gagic, Vesna14
- Garratt, Michael P. D.47
- Getachew, Awraris48
- Gonthier, David J.49
- Goodell, Peter B.50
- Graziosi, Ignazio51
- Groves, Russell L.7
- Gurr, Geoff M.52
- Hajian-Forooshani, Zachary53
- Heimpel, George E.41
- Herrmann, John D.39
- Huseth, Anders S.54
- Inclán, Diego J.55
- Ingrao, Adam J.56
- Iv, Phirun57
- Jacot, Katja19
- Johnson, Gregg A.41
- Jones, Laura14
- Kaiser, Marina31
- Kaser, Joe M.41
- Keasar, Tamar58
- Kim, Tania N.7
- Kishinevsky, Miriam58
- Landis, Douglas A.56
- Lavandero, Blas59
- Lavigne, Claire44
- Le Ralec, Anne60
- Lemessa, Debissa61
- Letourneau, Deborah K.62
- Liere, Heidi7
- Lu, Yanhui48
- Lubin, Yael63
- Luttermoser, Tim6
- Maas, Bea64
- Mace, Kevi65
- Madeira, Filipe66
- Mader, Viktoria38
- Cortesero, Anne Marie67
- Marini, Lorenzo68
- Martinez, Eliana69
- Martinson, Holly M.70
- Menozzi, Philippe71
- Mitchell, Matthew G. E.72
- Miyashita, Tadashi73
- Molina, Gonzalo A. R.74
- Molina-Montenegro, Marco A.75
- O'Neal, Matthew E.76
- Opatovsky, Itai77
- Ortiz-Martinez, Sebaastian59
- Nash, Michael78
- Östman, Örjan79
- Ouin, Annie80
- Pak, Damie25
- Paredes, Daniel81
- Parsa, Soroush82
- Parry, Hazel14
- Perez-Alvarez, Ricardo6
- Perović, David J.52
- Peterson, Julie A.41
- Petit, Sandrine83
- Philpott, Stacy M.62
- Plećaš, Milan31
- Pluess, Therese84
- Pons, Xavier66
- Potts, Simon G.47
- Pywell, Richard F.85
- Ragsdale, David W.86
- Rand, Tatyana A.82
- Raymond, Lucie60
- Ricci, Benoît83
- Sargent, Chris8
- Sarthou, Jean-Pierre80
- Saulais, Julia60
- Schäckermann, Jessica40
- Schmidt, Nick P.76
- Schneider, Gudrun4
- Schüepp, Christof84
- Sivakoff, Frances S.87
- Smith, Henrik G.88
- Whitney, Kaitlin Stack89
- Stutz, Sonja90
- Szendrei, Zsofia56
- Takada, Mayura B.73
- Taki, Hisatomo91
- Tamburini, Giovanni13
- Thomson, Linda J.92
- Tricault, Yann60
- Tsafack, Noelline93
- Tschumi, Matthias19
- Valantin-Morison, Muriel94
- Van Trinh, Mai95
- van der Werf, Wopke23
- Vierling, Kerri T.96
- Werling, Ben P.56
- Wickens, Jennifer B.47
- Wickens, Victoria J.47
- Woodcock, Ben A.85
- Wyckhuys, Kris97
- Xiao, Haijun98
- Yasuda, Mika99
- Yoshioka, Akira100
- Zou, Yi101
- 1. University of California, Davis
- 2. Stanford University
- 3. National Audubon Society
- 4. University of Würzburg
- 5. Bioversity International
- 6. Cornell University
- 7. University of Wisconsin-Madison
- 8. University of Maryland
- 9. University of California, Santa Barbara
- 10. Centro Agronomico Tropical De Investigacion Y Ensenanza Catie
- 11. Virginia Tech
- 12. Institut National de la Recherche Agronomique (INRA)*
- 13. Swedish University of Agricultural Sciences
- 14. Commonwealth Scientific and Industrial Research Organisation
- 15. University of Göttingen
- 16. Lincoln University
- 17. International Food Policy Research Institute
- 18. University of Massachusetts Amherst
- 19. Agroscope
- 20. UMR 0980 BAGAP*
- 21. PMAS-Arid Agriculture University Rawalpindi*
- 22. UPR Bioagresseurs Analyse et Maîtrise du Risque*
- 23. Wageningen University & Research
- 24. Brandenburg University of Technology
- 25. Pennsylvania State University
- 26. Texas A&M AgriLife Research*
- 27. Museum of Natural Sciences of Barcelona
- 28. University of Arizona
- 29. Universidade Federal de Goiás
- 30. King Juan Carlos University
- 31. University of Belgrade
- 32. University of Hull
- 33. AGroecologies, Innovations & Ruralities
- 34. University of Manitoba
- 35. University of Vermont
- 36. Open Universiteit*
- 37. University of Côte d'Azur*
- 38. University of Giessen
- 39. Kiel University
- 40. University of Freiburg
- 41. University of Minnesota
- 42. University of Koblenz and Landau
- 43. Leibniz Institute for Science and Mathematics Education
- 44. UR1115 Plantes*
- 45. University of Exeter
- 46. University of Natural Resources and Life Sciences
- 47. University of Reading
- 48. Chinese Academy of Agricultural Sciences
- 49. University of Kentucky
- 50. Kearney Agricultural Center*
- 51. World Agroforestry Centre
- 52. Charles Sturt University
- 53. University of Michigan-Ann Arbor
- 54. North Carolina State University
- 55. Central University of Ecuador
- 56. Michigan State University
- 57. Ministry of Agriculture, Forestry and Fisheries*
- 58. University of Haifa
- 59. University of Talca
- 60. Agrocampus Ouest
- 61. Ethiopian Biodiversity Institute*
- 62. University of California, Santa Cruz
- 63. Ben-Gurion University of the Negev
- 64. University of Vienna
- 65. California Department of Food and Agriculture
- 66. University of Lleida
- 67. University of Rennes 1
- 68. University of Padua
- 69. Centro de Investigación Obonuco*
- 70. McDaniel College
- 71. Centre de Coopération Internationale en Recherche Agronomique pour le Développement
- 72. University of British Columbia
- 73. University of Tokyo
- 74. University of Buenos Aires
- 75. Catholic University of the North
- 76. Iowa State University
- 77. Regional Agricultural Research and Development Center*
- 78. University of Adelaide
- 79. Swedish Agricultural University*
- 80. University of Toulouse
- 81. Estación Experimental del Zaidín
- 82. Agricultural Research Service
- 83. Université Bourgogne Franche-Comté
- 84. University of Bern
- 85. Centre for Ecology and Hydrology
- 86. Texas A&M University
- 87. The Ohio State University
- 88. Lund University
- 89. Rochester Institute of Technology
- 90. Cabi
- 91. Forestry and Forest Products Research Institute
- 92. University of Melbourne
- 93. Ningxia University
- 94. AgroParisTech Agronomie*
- 95. Institute for Agricultural Environment*
- 96. University of Idaho
- 97. Centro Internacional de Agricultura Tropical, Cali, Colombia
- 98. Jiangxi Agricultural University
- 99. Agriculture and Food
- 100. National Institute for Environmental Studies
- 101. Xi'an Jiaotong-Liverpool University
Description
The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies.
Notes
Files
Files
(13.9 MB)
Name | Size | Download all |
---|---|---|
md5:9fdd4b45452607a316c935a5fc1acfe0
|
13.8 MB | Download |
md5:7ab05a331a7001fe55349eb9cb270610
|
20.6 kB | Download |
Additional details
Related works
- Is cited by
- 10.1073/pnas.1800042115 (DOI)