Published March 17, 2021 | Version v1
Dataset Open

Self-organising cicada choruses respond to the local sound and light environment

  • 1. University of Kansas
  • 2. Arizona State University
  • 3. University of Virginia
  • 4. Rockefeller University

Description

1. Periodical cicadas exhibit an extraordinary capacity for self-organising spatially synchronous breeding behavior. The regular emergence of periodical cicada broods across the US is a phenomenon of longstanding public and scientific interest, as the cicadas of each brood emerge in huge numbers and briefly dominate their ecosystem. During the emergence, the 17-year periodical cicada species Magicicada cassini is found to form synchronised choruses, and we investigated their chorusing behavior from the standpoint of spatial synchrony.

2. Cicada choruses were observed to form in trees, calling regularly every five seconds. In order to determine the limits of this self-organising behaviour, we set out to quantify the spatial synchronisation between cicada call choruses in different trees, and how and why this varies in space and time.

3. We performed 20 simultaneous recordings in Clinton State Park, Kansas, in June 2015 (Brood IV) with a team of citizen-science volunteers using consumer equipment (smartphones). We use a wavelet approach to show in detail how spatially synchronous, self-organised chorusing varies across the forest.

4. We show how conditions that increase the strength of audio interactions between cicadas also increase the spatial synchrony of their chorusing. Higher forest canopy light levels increase cicada activity, corresponding to faster and higher-amplitude chorus cycling and to greater synchrony of cycles across space. We implemented a relaxation-oscillator-ensemble model of interacting cicadas, finding that a tendency to call more often, driven by light levels, results in all these effects.

5. Results demonstrate how the capacity to self-organise in ecology depends sensitively on environmental conditions. Spatially correlated modulation of cycling rate by an external driver can also promote self-organisation of phase synchrony.

Notes

Data is presented in csv format, output from MATLAB in Windows 10.

Funding provided by: National Science Foundation
Crossref Funder Registry ID: http://dx.doi.org/10.13039/100000001
Award Number: 1442595

Funding provided by: University of Kansas
Crossref Funder Registry ID: http://dx.doi.org/10.13039/100007859
Award Number:

Funding provided by: U.S. Department of Agriculture
Crossref Funder Registry ID: http://dx.doi.org/10.13039/100000199
Award Number: 2016-67012-24694

Funding provided by: NatureNet Science Fellowship*
Crossref Funder Registry ID:
Award Number:

Funding provided by: National Science Foundation
Crossref Funder Registry ID: http://dx.doi.org/10.13039/100000001
Award Number: 17114195

Files

CicadaVolumeTimeSeriesAtLocation10.csv

Files (30.8 MB)

Name Size Download all
md5:2da044ab5d89fe9bae5aa8a9d594b59e
1.5 MB Preview Download
md5:74d3d2956f1bc8d432daefed0490983e
1.5 MB Preview Download
md5:2f53d0cb551c9dabe05d0b92ed903337
1.5 MB Preview Download
md5:0337ccf19c95b2c2f9a2531b4cd6bf6d
1.5 MB Preview Download
md5:984f3b493814f87b757c35ff20d056bd
1.5 MB Preview Download
md5:2ee0880c3865cc95c2bf2d86f7c94492
1.5 MB Preview Download
md5:8721656cf196e7f99081d3cfb2107473
1.5 MB Preview Download
md5:5b143642535bee596b284b4ba76fd41a
1.5 MB Preview Download
md5:003637a84a99cc76d2c5b2394356eba3
1.5 MB Preview Download
md5:22529043e95a3d16af4a7fc07dfde6c4
1.5 MB Preview Download
md5:b8626f0f4a251cd97798ce901e7a7a3c
1.5 MB Preview Download
md5:0f3e1383faedf4da85c8be5adb79486f
1.5 MB Preview Download
md5:d6b1e29c5739502d23a4f4ffe4480ca0
1.5 MB Preview Download
md5:92ffcd87f99519848bd4ebd25537d784
1.5 MB Preview Download
md5:3b8fc7a518a7664e53ace5d1d421688f
1.5 MB Preview Download
md5:d94edfef36dd4835029614dcca0c3d51
1.5 MB Preview Download
md5:c35494859c2d8bedcf0056fdb6f1a3e4
1.5 MB Preview Download
md5:6b3a744b28f2ed402eabc10c8a67dd77
1.5 MB Preview Download
md5:231493df48c43b3045cc0e36a07ae38e
1.5 MB Preview Download
md5:3173d9c70596b76cf64452a6ea3ea724
1.5 MB Preview Download
md5:aca955ae84b262ec2939f83cf9a3394a
130.7 kB Preview Download
md5:44657768270d3e9c43c26b02bf8f590d
486 Bytes Preview Download