Published March 31, 2020 | Version v1
Journal article Open

Electrodeposition of Fe–W Alloys from Citrate Bath: Impact of Anode Material

  • 1. Institute of Applied Physics
  • 2. Shevchenko Pridnestrovie State University
  • 3. Lithuanian Energy Institute
  • 4. Institute of Applied Physics/Shevchenko Pridnestrovie State University


The effect of the anode material on the rate of electrodeposition of Fe-W alloy coatings from a citrate bath is studied. Both Fe and Ni soluble anodes and Pt and graphite insoluble anodes are addressed. The effects associated with the anode material are attributed to anodic oxidation of an Fe(II)-citrate complex involved in electrodeposition. In addition to its likely oxidation at the anode, this complex catalyzes reduction of W-containing species and acts as precursor to Fe deposition; these processes unfold via the formation of corresponding intermediates, their surface coverage determining the alloy composition. X-ray photoelectron spectroscopy characterization of deposited alloys indicates that the intermediate FeOHads is oxidized by water to form surface oxides. This process can explain the previously reported macroscopic size effect, i.e., the effect of the volume current density on the microhardness of deposited alloys. By using a soluble iron anode, we achieve an unprecedentedly high rate of alloy de position (25 μm/h at a current density of 20 mA/cm2).


This is a post-peer-review version of an article published in Surface Engineering and Applied Electrochemistry. The final authenticated version is available online at: DOI: 10.3103/S1068375520010020


Belevschii _2020.pdf

Files (1.1 MB)

Name Size Download all
1.1 MB Preview Download

Additional details


SMARTELECTRODES – Multiscaled Smart Metallic and Semiconductor Electrodes for Electrochemical Processing and Devices 778357
European Commission