Published January 12, 2026
| Version v1
Preprint
Open
The Infoton Particles at Hawking Temperature
Description
By substituting Hawking temperature (T_H = ℏc³/8πGMk_B) into the Infoton equation m = (k_B T ln(2))/c², I derive the information-energy mass at a black hole horizon: m = (ℏc)(ln(2))/(8πGM). This result shows Infoton mass is inversely proportional to black hole mass—as a black hole evaporates, information at its horizon becomes more massive. More generally, temperature mediates the coupling between information and spacetime geometry.
Files
Infoton at Hawking Temperature.pdf
Files
(365.5 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:7edf74988d5709e3965df52396f672fa
|
365.5 kB | Preview Download |
Additional details
Related works
- Cites
- Preprint: 10.5281/zenodo.18210355 (DOI)
Dates
- Accepted
-
2026-01-12
Software
- Repository URL
- https://github.com/JanuaryNWalker/Infoton
- Development Status
- Wip
References
- 1. Walker, J. The Infoton: A Fundamental Particle of Information-Energy. Januarian Physics 2026, 1, 1.0. https://doi.org/10.5281/zenodo.18210354
- 2. Einstein, A. On the electrodynamics of moving bodies. Ann. Phys. 1905, 17, 891. https://users.physics.ox.ac.uk/~rtaylor/teaching/specrel.pdf
- 3. Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 1961, 5, 183–191. https://doi.org/10.1147/rd.53.0183
- 4. Cortês, M.; Liddle, A.R. Hawking evaporation and the Landauer Principle. arXiv 2024, arXiv:2407.08777. https://arxiv.org/abs/2407.08777
- 5. Hawking, S.W. Black hole explosions? Nature 1974, 248, 30–31. https://doi.org/10.1038/248030a0
- 6. Nernst, W. Über die Berechnung chemischer Gleichgewichte aus thermischen Messungen. Nachr. Kgl. Ges. Wiss. Göttingen 1906, 1, 1–40. https://academicweb.nd.edu/~powers/ame.20231/nernst1906.pdf