Artifact for "SparSamp: Efficient Provably Secure Steganography Based on Sparse Sampling"
Description
SparSamp Artifact Description
This repository contains the Artifact for the paper "SparSamp: Efficient Provably Secure Steganography Based on Sparse Sampling".
SparSamp introduces a novel steganography scheme leveraging sparse sampling to achieve efficient and provably secure information hiding.
Overview
The Artifact provides a Python implementation for encoding and decoding messages using SparSamp within neural generative models. Core functionalities:
-
Encoding: Embed messages into generated tokens via
encode_spar
. -
Decoding: Extract messages from tokens via
decode_spar
.
Used Models & Datasets
-
Models:
-
Text: GPT-2 (
openai-community/gpt2
), Qwen-2.5 (Qwen/Qwen2.5-3B-Instruct
), Llama-3 (meta-llama/Llama-3.1-8B-Instruct
) -
Image: DDPM (FFHQ dataset)
-
Audio: WaveRNN
-
-
Datasets: IMDB text samples (first 3 sentences per sample).
Key Features
-
Provable Security
-
Preserves original probability distributions (KLD = 0).
-
-
High Efficiency
-
(O(1)) time complexity per sampling step.
-
Embedding speed up to 755 bits/s (GPT-2).
-
-
Practicality
-
Plug-and-play design: Replace sampling components in existing models.
-
Supports multi-modal tasks (text, image, audio).
-
Requirements
Hardware
-
CPU: Intel Xeon Gold 6330 @ 2.00GHz (minimum)
-
GPU: NVIDIA RTX 4090 (recommended for acceleration)
-
Memory: ≥128GB RAM
-
Disk: ≥20GB for model checkpoints.
Software
-
Python: 3.8.5
Libraries:
torch==2.2.2
transformers==4.41.2
scipy>=1.10
Note the problems that hardware may cause.
Files
Artifact new.zip
Files
(1.9 MB)
Name | Size | Download all |
---|---|---|
md5:1cf080219f9f24d0c608151cee26e99e
|
1.9 MB | Preview Download |