Published December 18, 2024
| Version v0.1
Dataset
Open
ASVspoof 5: Design, Collection and Validation of Resources for Spoofing, Deepfake, and Adversarial Attack Detection Using Crowdsourced Speech
Creators
-
Wang, Xin
(Contact person)1
-
Delgado, Héctor2
-
Tak, Hemlata3
-
Jung, Jee-weon4
-
Shim, Hyejin5
-
Todisco, Massimiliano6
-
Kukanov, Ivan7
-
Liu, Xuechen1
-
Sahidullah, Md8
-
Kinnunen, Tomi9
-
Evans, Nicholas6
-
Lee, Kong Aik10
-
Yamagishi, Junichi1
- Jeong, Myeonghun11
- Zhu, Ge12
- Zang, Yongyi12
- Zhang, Neil12
- Maiti, Soumi5
- Lux, Florian13
- Muller, Nicolas14
- Zhang, Wangyou15
- Sun, Chengzhe16
- Hou, Shuwei16
- Lyu, Siwei16
- Le Maguer, Sebastien17
- Gong, Cheng18
- Guo, Hanjie19
- Chen, Liping19
- Singh, Vishwanath9
-
1.
National Institute of Informatics
- 2. Nuance Communications Inc
- 3. Pindrop
- 4. Apple
-
5.
Carnegie Mellon University
-
6.
EURECOM
- 7. KLASS
-
8.
TCG Crest
-
9.
University of Eastern Finland
- 10. The Hong Kong Polytechnic University
-
11.
Seoul National University
-
12.
University of Rochester
-
13.
University of Stuttgart
-
14.
Fraunhofer Institute for Applied and Integrated Security
-
15.
Shanghai Jiao Tong University
-
16.
University at Buffalo
-
17.
University of Helsinki
-
18.
Tianjin University
-
19.
University of Science and Technology of China
Description
This is the Zenodo repository for the ASVspoof 5 database. ASVspoof 5 is the fifth edition in a series of challenges which promote the study of speech spoofing and deepfake attacks, and the design of detection solutions. Compared to previous challenges, the ASVspoof~5 database is built from crowdsourced data collected from around 2,000 speakers in diverse acoustic conditions. More than 20 attacks, also crowdsourced, are generated and optionally tested using surrogate detection models, while seven adversarial attacks are incorporated for the first time.
- Please check README.txt and LICENSE.txt before downloading the database.
- It is highly recommended to follow the rules and instructions in the ASVspoof 5 challenge evaluation plan (phase 2, https://www.asvspoof.org/), if you want to produce results comparable with the literature.
- Please consider citing the reference listed at the bottom of this page.
- Latest work using the ASVspoof 5 database can be found in the Automatic Speaker Verification Spoofing Countermeasures Workshop proceeding: https://www.isca-archive.org/asvspoof_2024/index.html
- If you are interested in creating spoofed data for research purpose using the ASVspoof 5 protocol, please send request to info@asvspoof.org
Files
LICENSE.txt
Files
(142.3 GB)
Name | Size | Download all |
---|---|---|
md5:865d0e894ea9f686f0f37e5ae3ae3616
|
20.7 MB | Download |
md5:df0be44957623991028cce59792beb17
|
6.6 GB | Download |
md5:1e8cd685d89b64502692f1bcf1a13db3
|
6.6 GB | Download |
md5:5e0031f08c30e4bdbf0c59f91b2d662b
|
6.8 GB | Download |
md5:a8c800766f3d4ef87971e2b4f29663e2
|
8.4 GB | Download |
md5:c35064188f54f07c87aba58de22534a0
|
8.5 GB | Download |
md5:ed7cbcd1b2847998b72472ddf6b445e3
|
8.5 GB | Download |
md5:626a080e994b05df49c577d7b3dede8d
|
8.5 GB | Download |
md5:05f19a5e64fa556714ae1b38eb2ea70b
|
8.5 GB | Download |
md5:2ca2f52a3bbf827f7ec155ecb47e85d6
|
8.5 GB | Download |
md5:671200b5de2fc1e74a563b07b057af8f
|
8.5 GB | Download |
md5:eaf885b1299a61eb07f71e82e96dba37
|
8.5 GB | Download |
md5:b2625683bf440abae2af901a45542ad9
|
8.5 GB | Download |
md5:c50281c8233af6f3b0899604d21ade44
|
8.6 GB | Download |
md5:b0cc86b14826a7701b52aad4f53daf9c
|
7.5 GB | Download |
md5:d05be3f4be7a343fdbdd0ed29fdff2e1
|
7.5 GB | Download |
md5:70d1ba4ad75a20aef3dae541fbd321e3
|
7.5 GB | Download |
md5:c9bb56af2cc410d98338d74babcb95c9
|
7.5 GB | Download |
md5:a3969816982f3e52300d6147ad796df7
|
7.5 GB | Download |
md5:9cbefc63251e8cbc8eb22e62cd6fe584
|
19.9 kB | Preview Download |
md5:784002b8449ba1eeecc042bfad285de7
|
12.1 kB | Preview Download |
Additional details
Funding
- Japan Science and Technology Agency
- PRESTO JPMJPR23P9
- Research Council of Finland
- SPEECHFAKES 349605
- Agence Nationale de la Recherche
- BRUEL ANR-22-CE39-0009
- Agence Nationale de la Recherche
- COMPROMIS ANR22-PECY-0011
Dates
- Available
-
2024-12
References
- Xin Wang, Héctor Delgado, Hemlata Tak, Jee-weon Jung, Hye-jin Shim, Massimiliano Todisco, Ivan Kukanov, Xuechen Liu, Md Sahidullah, Tomi Kinnunen, Nicholas Evans, Kong Aik Lee, Junichi Yamagishi, Myeonghun Jeong, Ge Zhu, Yongyi Zang, You Zhang, Soumi Maiti, Florian Lux, Nicolas Müller, Wangyou Zhang, Chengzhe Sun, Shuwei Hou, Siwei Lyu, Sébastien Le Maguer, Cheng Gong, Hanjie Guo, Liping Chen, and Vishwanath Singh. 2024. ASVspoof 5: Design, Collection and Validation of Resources for Spoofing, Deepfake, and Adversarial Attack Detection Using Crowdsourced Speech. To be submmited (2024).
- Xin Wang, Héctor Delgado, Hemlata Tak, Jee-weon Jung, Hye-jin Shim, Massimiliano Todisco, Ivan Kukanov, Xuechen Liu, Md Sahidullah, Tomi Kinnunen, Nicholas Evans, Kong Aik Lee, and Junichi Yamagishi. 2024. ASVspoof 5: Crowdsourced speech data, deepfakes, and adversarial attacks at scale. In ASVspoof Workshop 2024, 2024. 1--8. https://doi.org/10.21437/ASVspoof.2024-1