Published October 25, 2024
| Version v1
Dataset
Open
Direct imaging of carbohydrate stereochemistry structural dataset
Contributors
Researchers:
Supervisors:
Description
Dataset includes.
- Training data for the NequIP model (all_4NPxG_mod_E.extxyz) including structures, energies and force components.
- Zip file (4NPxG_training_run.zip) containing training parameters (config.yaml) and metrics (.csv files) and the deployed NequIP model (deployed_model.pth) used for minima hopping in the corresponding study.
- Bayesian Optimization Structure Search results for conformers (alpha/beta-4-Nitrophenyl-D-Galacturonide_opt.extxyz) and isolated adsorbates (alpha/beta_isolated_adsorbates_opt.extxyz) on Au(111). DFT relaxed structures.
- CREST NADG conformers (crest_conformers_alpha.extxyz).
- Initial monolayer structure relaxations (4NPaG/4NPbG_monolayer_relaxation_every_fifth.extxyz). Every fifth geometry from the relaxation.
- Results from NequIP minima hopping for monolayer structures as trajectory files (alpha/beta_minima_hopping_nequip.traj). Contains also protonated NADG structures (alpha_protonated_minima_hopping_nequip.traj).
- Final NADG and NBDG monolayer structures with Hartree potentials and STM images simulated with FHI-aims (Final_NADG/NBDG_hartree_potential.cube, Final_NADG/NBDG_stm_01.cube) with the z-maps (Final_NADG/NBDG_stm_z_map.cube) for creating STM image contrast.
Files
4NPxG_training_run.zip
Files
(381.0 MB)
Name | Size | Download all |
---|---|---|
md5:4de8adbbe22ca068b18a93017a9c5dfd
|
11.9 MB | Download |
md5:d6bdfc3f5a05dbfe70ad91da05ba882a
|
8.1 MB | Download |
md5:b1e53bdad2a094d76b6c6fe8acb0bd49
|
53.9 MB | Preview Download |
md5:e6bbf6a1de98850b0fda007e3fe30354
|
80.8 MB | Download |
md5:f2eaa5738e57f88883787b0768a119ed
|
165.3 kB | Download |
md5:6c05e53bacc4cdc8cd0f3e48527fac9a
|
155.1 kB | Download |
md5:7ba99ab3b383411e8861be44cfc01a3d
|
18.3 MB | Download |
md5:d148201baa8b12f0b6e6e6b74e91d407
|
6.7 MB | Download |
md5:9590748c4c1ddda7341bf55f697e02fb
|
402.0 kB | Download |
md5:f017bbe6a87bfadc281eb9ef8a1514e0
|
211.9 kB | Download |
md5:fb6abe2644fb0041ca8331ed55797eae
|
16.0 MB | Download |
md5:56ac15bf38b5237a8964e26b264fc188
|
246.2 kB | Download |
md5:0b8cee9e18c65becdad384b24fad849c
|
32.7 MB | Download |
md5:c59017fc12183149abb0dc49ad7a5496
|
32.7 MB | Download |
md5:190a2e62f98071146e1bcd66e9964ec1
|
26.7 MB | Download |
md5:3e4f0f0b8e4a4cf8a005e91a36ec2d10
|
32.7 MB | Download |
md5:e1b10d831a9f38af8bebc9939397a6fa
|
32.7 MB | Download |
md5:450ee24cde2d663d2f809f3126d852e2
|
26.7 MB | Download |
Additional details
Related works
- Is supplement to
- Journal article: arXiv:2410.20897 (arXiv)
Funding
- CSC - IT Center for Science (Finland)
- Bayesian optimization for the identification and characterization of lignocellulosic building blocks project 2008059
- Research Council of Finland
- Microscopy and machine learning in molecular characterization of lignocellulosic materials” (MIMIC) grant 347319