Published July 10, 2024 | Version 2
Dataset Open

State of Nature layers for Water Availability and Water Pollution to support SBTN Step 1: Assess and Step 2: Interpret & Prioritize

  • 1. Quantis
  • 2. ROR icon WWF-UK
  • 3. ROR icon World Resources Institute
  • 4. AgResearch, Lincoln Science Centre
  • 5. World Wildlife Fund
  • 6. Science Based Targets Network

Description

There are multiple well-recognized and peer-reviewed global datasets that can be used to assess water availability and water pollution. Each of these datasets are based on different inputs, modeling approaches, assumptions, and limitations. Therefore, in SBTN Step 1: Assess and Step 2: Interpret & Prioritize, companies are required to consult different global datasets for a robust and comprehensive State of Nature (SoN) assessment for water availability and water pollution. 

To streamline this process, WWF, the World Resources Institute (WRI), and SBTN worked together to develop two ready-to-use unified layers of SoN – one for water availability and one for water pollution – in line with the Technical Guidance for Steps 1: Assess and Step 2: Interpret & Prioritize (July 2024). The main outputs contain the maximum values of Water Availability and of Water Pollution as well as the individual indicators' values. This information is available at different spatial resolutions, thus in two data formats: 1) a shapefile with values at HydroBasins (Pfafstetter level 6); and 2) an excel file with values at sub-national divisions (Adm1) and national divisions (Adm0). These datasets and complete documentation are publicly available for download below.

Files

Documentation SBTN State of Nature Layers for Water v2.pdf

Files (174.2 MB)

Name Size Download all
md5:c0f800eda33501544ebb61ee6a5af604
2.4 MB Preview Download
md5:c77839764820593c1675c4a761e6a885
29.8 MB Preview Download
md5:05eaa979127f25f8ea717a9f91309540
45.0 MB Preview Download
md5:6185f1f071015e7fc2b625786380cc38
716.6 kB Download
md5:ab2adcc26e202f43a3939ac65012a88c
96.4 MB Preview Download

Additional details

References

  • Brauman, K. A., Richter, B. D., Postel, S., Malsy, M., & Flörke, M. (2016). Water depletion: An improved metric for incorporating seasonal and dryyear water scarcity into water risk assessments. Elem Sci Anth, 4. https://doi.org/10.12952/journal.elementa.000083
  • Damania, R., Desbureaux, S., Rodella, A. S., Russ, J., & Zaveri, E. (2019). Quality unknown: The invisible water crisis. Washington, DC: World Bank. http://hdl.handle.net/10986/32245
  • GRDC (2020). WMO Basins and Sub-Basins / Global Runoff Data Centre, GRDC. 3rd, rev. ext. ed. Koblenz, Germany: Federal Institute of Hydrology (BfG). https://www.bafg.de/GRDC/EN/02_srvcs/22_gslrs/223_WMO/wmo_regions_node.html
  • Hogeboom, R. J., De Bruin, D., Schyns, J. F., Krol, M. S., & Hoekstra, A. Y. (2020). Capping human water footprints in the world's river basins. Earth's Future, 8(2), e2019EF001363. https://doi.org/10.1029/2019EF001363
  • Kuzma, S., Bierkens, M. F., Lakshman, S., Luo, T., Saccoccia, L., Sutanudjaja, E. H., & Van Beek, R. (2023). Aqueduct 4.0: Updated decision-relevant global water risk indicators. Washington, DC, USA: World Resources Institute. https://doi.org/10.46830/writn.23.00061
  • Lehner, B., Grill G. (2013). Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems. Hydrological Processes, 27(15): 2171–2186. https://doi.org/10.1002/hyp.9740
  • McDowell, R. W., Noble, A., Pletnyakov, P., Haggard, B. E., Mosley, L. M. (2020). Global mapping of freshwater nutrient enrichment and periphyton growth potential. Scientific Reports, 10. https://doi.org/10.1038/s41598-020-60279-w
  • Potapov, P., Turubanova, S., Hansen, M. C., Tyukavina, A., Zalles, V., Khan, A., ... & Cortez, J. (2021). Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nature Food, 3(1), 19-28. https://doi.org/10.1038/s43016-021-00429-z