Published June 28, 2024 | Version v2
Dataset Open

Supplementary Data: Human settlement pressure drives slow-moving landslide exposure

  • 1. ROR icon University of Potsdam

Description

These datasets (.Rmd, .Rroj., .rds) are ready to use within the R software for statistical programming with the R Studio Graphical User Interface (https://posit.co/download/rstudio-desktop/). Please copy the folder structure into one single directory and follow the instructions given in the .Rmd file. Files and folders are described in the README.md file

0_ferrer_etal_2024.Rproj

README.md

1_R_Notebook:

  • SlowMovingLandslide_Exposure.rmd
  • Ferrer2024_FloodExposureAnalysis.Rmd

2_data:

  • 1_input:
    • sm_database_2023_01_17.csv
    • sm_database_references.pdf
    • gmba_v2
    • ipcc_regions
    • natrual_earth
  • 2_processed:
    • model_data_2023_01_17.csv
    • summary_database.csv

3_results:

  • 1_model
    • 2023_12_31.model.rds
  • 2_figures:
    • main_figure_elements
  • 3_ext_figures

4_manuscript_figures:

  • 1_main figures
  • 2_extended_figures


5_floding_analysis:

  • flood_comp_mod.csv
  • flood_comp_model.rds

Files

SlowMovingLandslide_Exposure.zip

Files (88.1 MB)

Name Size Download all
md5:ced1b8a07a8ca93bf81f5dc50cc39fd6
88.1 MB Preview Download

Additional details

References

  • Snethlage, M.A., Geschke, J., Spehn, E.M., Ranipeta, A., Yoccoz, N.G., Körner, Ch., Jetz, W., Fischer, M. & Urbach, D. GMBA Mountain Inventory v2. GMBA-EarthEnv. https://doi.org/10.48601/earthenv-t9k2-1407 (2022).
  • Iturbide, M., Gutiérrez, J. M., Alves, L. M., Bedia, J., Cerezo-Mota, R., Cimadevilla, E., Cofiño, A. S., Di Luca, A., Faria, S. H., Gorodetskaya, I. V., Hauser, M., Herrera, S., Hennessy, K., Hewitt, H. T., Jones, R. G., Krakovska, S., Manzanas, R., Martínez-Castro, D., Narisma, G. T., Nurhati, I. S., Pinto, I., Seneviratne, S. I., van den Hurk, B., and Vera, C. S.: An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets, Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-2959-2020, 2020.
  • Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.
  • Duman et al. Landslide inventory of northwestern Anatolia, Turkey. Engineering Geology, 77, 99–114. https://doi.org/10.1016/j.enggeo.2004.08.009 (2005).
  • Govern d'Andorra. Infraestructura de dades espacials d'Andorra. ide andorra https://www.cartografia.ad/geoportal (n.d.)
  • Béjar-Pizarro, et al. Mapping Vulnerable Urban Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR Data. Remote Sensing, 9(9), 876. https://doi.org/10.3390/rs9090876 (2017).
  • Arizona Geological Survey. Distribution of Landslides in Arizona. https://azgs.arizona.edu/photo/distribution-landslides-arizona (2018)
  • Kubwimana et al. Characteristics and Distribution of Landslides in the Populated Hillslopes of Bujumbura, Burundi. Geosciences, 11, 259. https://doi.org/10.3390/geosciences11060259 (2021).
  • Autorita di Bacino Distrettuale dell'Appennino Meridionale. Piano Stralcio per l'Assetto Idrogeologico - Rischio di frana [PSAI-RF]. https://www.distrettoappenninomeridionale.it/index.php/elaborati-di-piano-menu/ex-adb-calabria-menu/piano-stralcio-assetto-idrogeologico-rischio-da-frana-articolo (n.d.)
  • Tsou, C. Y., Chigira, M., Matsushi, Y. & Chen, S. C. Deep-seated gravitational deformation of mountain slopes caused by river incision in the Central Range, Taiwan: Spatial distribution and geological characteristics. Engineering Geology, 196, 126-138. https://doi.org/10.1016/j.enggeo.2015.08.012 (2015).
  • Lacroix, P., Dehecq, A. & Taipe, E. Irrigation-triggered landslides in a Peruvian desert caused by modern intensive farming. Nat. Geosci. 13, 56–60 (2020).
  • Notti et al. Human-induced coastal landslide reactivation: Monitoring by PSInSAR techniques and urban damage survey (SE Spain). Landslides, 12, 1007–1014. https://doi.org/10.1007/s10346-015-0612-3 (2015).
  • Dai et al. Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry. Remote Sensing of Environment, 186, 501–513. https://doi.org/10.1016/j.rse.2016.09.009 (2016).
  • Kropáček et al. Remote Sensing for Characterisation and Kinematic Analysis of Large Slope Failures: Debre Sina Landslide, Main Ethiopian Rift Escarpment. Remote Sensing, 7(12), 16183–16203. https://doi.org/10.3390/rs71215821 (2015).
  • Kropáček, J., Vařilová, Z., Nyssen, J. Historical aerial and terrestrial photographs for the investigation of mass movement dynamics in the Ethiopian Highlands, Land Degrad Dev, 30, 483–493. 2017 Revised: 29 October 2018 Accepted: 31 October 2018 DOI: 10.1002/ldr.3220 Land Degrad Dev. 2019;30:483–493. https://doi.org/10.1002/Idr.3220 (2019).
  • Pánek, T., Břežný, M., Kapustová, V., Lenart, J. & Chalupa, V. Large landslides and deep-seated gravitational slope deformations in the Czech Flysch Carpathians: New LiDAR-based inventory. Geomorphology, 346, 106852. ISSN 0169-555X. https://doi.org/10.1016/j.geomorph.2019.106852 (2019).
  • Dille et al. Acceleration of a Large Deep-seated Tropical Landslide Due to Urbanisation Feedbacks Dataset. zenodo https://zenodo.org/records/7118267 (2022)
  • Dille et al. Acceleration of a large deep-seated tropical landslide due to urbanization feedbacks. Nature Geoscience, 15, 1048–1055. https://doi.org/10.1038/s41561-022-01073-3 (2022).
  • Liu et al. Three-dimensional and long-term landslide displacement estimation by fusing C- and L-band SAR observations: A case study in Gongjue County, Tibet, China. Remote Sensing of Environment, 267, 112745. https://doi.org/10.1016/j.rse.2021.112745 (2021).
  • Urgilez V. A., Handwerger, A. L., Bakker, M. & Bogaard, T. A new method to detect changes in displacement rates of slow-moving landslides using InSAR time series. Landslides, 19, 2233-2247. https://doi.org/10.1007/s10346-022-01913-8 (2022).
  • Ambrosi, C., Strozzi, T., Scapozza, C. & Wegmüller, U. Landslide hazard assessment in the Himalayas (Nepal and Bhutan) based on Earth-Observation data. Engineering Geology, 237, 217–228. https://doi.org/10.1016/j.enggeo.2018.02.020 (2018).
  • Tomás et al. Spatiotemporal characteristics of the Huangtupo landslide in the Three Gorges region (China) constrained by radar interferometry. Geophysical Journal International, 197(1), 213–232. https://doi.org/10.1093/gji/ggu017 (2014).
  • Dille et al. Causes and triggers of deep-seated hillslope instability in the tropics – Insights from a 60-year record of Ikoma landslide (DR Congo). Geomorphology, 345, 106835. https://doi.org/10.1016/j.geomorph.2019.106835 (2019).
  • ISPRA. The Italian web platform on landslides and floods. Idrogeo https://idrogeo.isprambiente.it/app/ (n.d.)
  • NIED. Landslide Distribution Maps WMS. j-shis, https://www.j-shis.bosai.go.jp/en/wms-landslide (n.d.)
  • Peyret et al. Monitoring of the large slow Kahrod landslide in Alborz mountain range (Iran) by GPS and SAR interferometry. Engineering Geology, 100(3–4), 131-141. https://doi.org/10.1016/j.enggeo.2008.04.006 (2008).
  • Roberts et al. Changes in ground deformation prior to and following a large urban landslide in La Paz, Bolivia, revealed by advanced InSAR. Nat. Hazards Earth Syst. Sci., 19(3), 679–696. https://doi.org/10.5194/nhess-19-679-2019 (2019).
  • Notti et al. A multidisciplinary investigation of deep-seated landslide reactivation triggered by an extreme rainfall event: a case study of the Monesi di Mendatica landslide, Ligurian Alps. Landslides, 18, 2341–2365. https://doi.org/10.1007/s10346-021-01651-3 (2021).
  • Strozzi, T., Ambrosi, C. & Raetzo, H. Interpretation of Aerial Photographs and Satellite SAR Interferometry for the Inventory of Landslides. Remote Sensing, 5(5), 2554-2570. https://doi.org/10.3390/rs5052554 (2013).
  • Pawluszek-Filipiak, K., Borkowski, A. & Motagh, M. Multi-temporal landslide activity investigation by spaceborne SAR interferometry: The case study of the Polish Carpathians. Remote Sensing Applications: Society and Environment, 24, 100629. https://doi.org/10.1016/j.rsase.2021.100629 (2021).
  • Solari et al. Satellite radar data for back-analyzing a landslide event: the Ponzano (Central Italy) case study. Landslides, 15(3), 773–782. https://doi.org/10.1007/s10346-018-0952-x (2018).
  • Reyes‑Carmona et al. Improving landslide inventories by combining satellite interferometry and landscape analysis: the case of Sierra Nevada (Southern Spain). Landslides. 20, pages1815–1835 https://doi.org/10.1007/s10346-023-02071-1 (2023).
  • Demurtas, V., Orrù, P. E. & Deiana, G. Deep-seated gravitational slope deformations in central Sardinia: insights into the geomorphological evolution. Journal of Maps, 17(2), 607-620. https://doi.org/10.1080/17445647.2021.1986157 (2021).
  • Cheaib et al. Landslides induced by the 2017 Mw7.3 Sarpol Zahab earthquake (Iran). Landslides, 19, 603–614. https://doi.org/10.1007/s10346-021-01832-0 (2022).
  • Reyes-Carmona et al. Rapid characterisation of the extremely large landslide threatening the Rules Reservoir (Southern Spain). Landslides, 18, 3781–3798. https://doi.org/10.1007/s10346-021-01728-z (2021).
  • Kropáček, J., Vařilová, Z., Nyssen, J. Historical aerial and terrestrial photographs for the investigation of mass movement dynamics in the Ethiopian Highlands, Land Degrad Dev, 30, 483–493. 2017 Revised: 29 October 2018 Accepted: 31 October 2018 DOI: 10.1002/ldr.3220 Land Degrad Dev. 2019;30:483–493. https://doi.org/10.1002/Idr.3220 (2019).
  • Teshebaeva, K., Echtler, H., Bookhagen, B. & Strecker, M. eep-seated gravitational slope deformation (DSGSD) and slow-moving landslides in the southern Tien Shan Mountains: new insights from InSAR, tectonic and geomorphic analysis. Earth Surf. Process. Landforms, 44(12), 2333–2348. https://doi.org/10.1002/esp.4648 (2019).
  • Coltorti, M., Pieruccini, P., Berakhi, O., Dramis, F. & Asfawossen Asrat. The Geomorphological Map of Mt. Amba Aradam Southern Slope (Tigray, Ethiopia), Journal of Maps, 5(1), 56-65, https://doi.org/10.4113/jom.2009.1043 (2009).
  • Tsou et al. Topographic and geologic controls on landslides induced by the 2015 Gorkha earthquake and its aftershocks: an example from the Trishuli Valley, central Nepal. Landslides , 15, 953–965. https://10.1007/s10346-017-0913-9 (2018).
  • Utah Geospatial Resource Center: Landslides and Debris Flows. https://gis.utah.gov/data/geoscience/landslides/ (2018)
  • Wu et al. Understanding the Slow Motion of the Wangjiashan Landslide in the Baihetan Reservoir Area (China) from Space-Borne Radar Observations. Advances in Civil Engineering, 2022, Article ID 1766038, 14 pages. https://doi.org/10.1155/2022/1766038 (2022).
  • Bennett, G. L., Miller, S. R., Roering, J. J. & Schmidt, D. A. Landslides, threshold slopes, and the survival of relict terrain in the wake of the Mendocino Triple Junction. Geology, 44(5), 363–366. https://doi.org/10.1130/G37530.1 (2016).
  • Handwerger, A. L., Fielding, E. J., Sangha, S. S. & Bekaert, D. P. S. Landslide sensitivity and response to precipitation changes in wet and dry climates. Geophysical Research Letters, 49, e2022GL099499. https://doi.org/10.1029/2022GL099499 (2022).
  • Handwerger, A. L., Fielding, E. J., Sangha, S. S., Bekaert, D. P. S. Landslide Sensitivity and Response to Precipitation Changes in Wet and Dry Climates Dataset. zenodo https://doi.org/10.1029/2022GL099499 (2022)
  • Xu, Y., Schulz, W. H., Lu, Z., Kim, J. & Baxstrom, K. Geologic controls of slow-moving landslides near the US West Coast. Landslides 18, 3353–3365 (2021).
  • Xu, Y., Lu, Z., Kim, J., Schulz. W. H. Slow-moving landslides near the U.S. West Coast mapped from ALOS and ALOS-2 InSAR, 2007-2019 Dataset. sciencebase-catalog https://doi.org/10.5066/P9OY7FZK (2021)
  • Ma, P., Cui, Y., Wang, W., Lin, H. & Zhang, Y. Coupling InSAR and numerical modeling for characterizing landslide movements under complex loads in urbanized hillslopes. Landslides, 18(6), 1611–1623. https://doi.org/10.1007/s10346-020-01604-2 (2021).
  • Zhang et al. Investigating slow-moving landslides in the Zhouqu region of China using InSAR time series. Landslides, 15, 1299-1315. https://doi.org/10.1007/s10346-018-0954-8 (2018).